CHCl_{3}) ; IR (film) $\nu_{\max } 3440,2965,2935,2910,2870,1726,1481,1455$, $1400,1365,1285,1162,1108,853,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.23\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic), $4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.31$ (ddd, $J=11.3,7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})$), 4.13 (ddd, $J=11.3,5.6$, $\left.5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \mathrm{H}_{2} \mathrm{OC}(\mathrm{O})\right), 4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO})$, $3.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.76(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.19(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$; HRMS (CI) caIcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5}+\mathrm{H} 325.2013$, found $325.2006(\mathrm{M}+\mathrm{H})$.

2,4-Dideoxy-3,5-O-(1-methylethylidene)-6-O-(phenylmethyl)-D-erythro-hexitol 1-(2,2-Dimethylpropanoate) (69). Diol 68 a ($196 \mathrm{mg}, 0.6$ mmol) and camphorsulfonic acid (CSA, $3 \mathrm{mg}, 0.012 \mathrm{mmol}$) were dissolved in 2,2-dimethoxypropane (2 mL) at room temperature under argon. The reaction mixture was stirred at that temperature for 30 min and then it was diluted with ether (30 mL) and washed with 10% aqueous NaHCO_{3} solution (2 mL) and brine (2 mL). Drying (MgSO_{4}) followed by flash column chromatography (silica, 10% ether in petroleum ether) gave acetonide $69(204 \mathrm{mg}, 93 \%)$. 69: colorless oil; $R_{f} 0.25$ (silica, 10% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-21.0^{\circ}\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\text {max }}$ $2970,2955,2935,2910,2870,1728,1495,1479,1455,1378,1365,1281$, $1261,1200,1158,1110,735,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36$ (s, 5 H , aromatic), $4.60,4.55$ (doublets, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.15\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})\right), 4.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO})$, 3.98 (m, 1 H, CHO), 3.51 (dd, $J=9.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.37 (dd, $\left.J=9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.78(\mathrm{dt}, J=6.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 1.54$ (dt, $J=12.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \mathrm{H}_{2}$) $1.44,1.40$ (singlets, 3 H each, acetonide), 1.33 (dt, $J=12.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H_{2}$), $1.19(\mathrm{~s}, 9 \mathrm{H}, t-B u)$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}+\mathrm{H} 365.2326$, found 365.2279 .

2,4-Dideoxy-6-O-[(1,1-dimethylethyl) diphenylsilyl]-3,5-O-(1-methyl-ethylidene)-D-erythro-hexitol 1-(2,2-Dimethylpropanoate) (71) via Alcohol 70. Benzyl ether 69 ($481 \mathrm{mg}, 1.34 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$, and $10 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ was added. The mixture was vigorously stirred under a H_{2} atmosphere at ambient temperature for 4 h (TLC monitoring). Removal of the catalyst by filtration followed by evaporation of the solvent gave essentially pure alcohol 70, which was dissolved in dry DMF (3 mL) and silylated without further purification as follows. Imidazole ($408 \mathrm{mg}, 6 \mathrm{mmol}$) and $t-\mathrm{BuPh}_{2} \mathrm{SiCl}(412 \mathrm{mg} \equiv$ $0.40 \mathrm{~mL}, 1.5 \mathrm{mmol}$) were sequentially added under argon at $25^{\circ} \mathrm{C}$, and the reaction mixture was stirred at that temperature for 3 h . The reaction mixture was then diluted with ether (50 mL) and washed with water (2 $\times 10 \mathrm{~mL}$) and brine (5 mL). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give an oily residue, which was flash chromatographed (silica, 10% ether in petroleum ether) to give derivative $71(500 \mathrm{mg}$, 73%). 71: colorless oil; $R_{f} 0.30$ (silica, 20% ether in petroleum ether);

IR (film) $\nu_{\max } 3070,3045,2960,2930,2860,1729,1480,1471,1462$, $1427,1380,1283,1200,11445,1110,1055,1040,1005,995,739,700$ cm^{-1} : ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.65(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.45-7.32 (m, 6 H , aromatic), $4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})\right.$), 3.97 (m, 2 H, CHO), $3.71\left(\mathrm{dd}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.54$ (dd, $J=10.1$, $\left.6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.78\left(\mathrm{dt}, J=6.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.62(\mathrm{dt}, J$ $=12.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H_{2}$) $, 1.39,1.35$ (singlets, 3 H each, acetonide), 1.21 (dt, $J=12.5,1 \mathrm{I} .8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$) $, 1.20,1.06$ (singlets, 9 H each, $l-B u)$.

Preparation of Compound 47 from 71. Compound 47 was prepared from pivaloate ester 71 by DIBAL reduction as described above for the preparation of 66a from 65a. Used, 71 ($285 \mathrm{mg}, 0.56 \mathrm{mmol}$); obtained, $47(211 \mathrm{mg}, 91 \%)$. The spectral data of this material were identical with those of a sample obtained from (+)-xylose as described above.

3,5-Dideoxy-6-O-[(1,1-dimethylethyl)dimethylsilyl]-1-O-(phenyl-methyl)-D-erythro-hexitol (68b). To a stirred solution of triol 13b (344 $\mathrm{mg}, 1.43 \mathrm{mmol}$) in DMF (2.5 mL) was added imidazole ($408 \mathrm{mg}, 6.00$ mmol) and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(226 \mathrm{mg}, 1.50 \mathrm{mmol})$. Stirring was continued for 2 h at ambient temperature, and then the reaction mixture was diluted with ether (50 mL). The organic phase was washed with water (3×5 mL) and brine (5 mL), dried (MgSO_{4}), and concentrated. Purification by flash column chromatography (silica, 70% ether in petroleum ether) gave pure diol 68b ($457 \mathrm{mg}, 90 \%$). 68b: $R_{f} 0.21$ (70% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-3.7^{\circ}\left(c 2.8, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\text {max }} 3420,3035,2955$, $2930,2860,1470,1460,1452,1390,1360,1309,1255,1092,1028,1005$, $938,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ ($\mathrm{s}, 5 \mathrm{H}$, aromatic), 4.56 (s, $2 \mathrm{H}, \mathrm{PhCH} \mathrm{O}_{2}$), 4.08 (m, $3 \mathrm{H}, \mathrm{CHO}, \mathrm{OH}$), 3.87 (m, $3 \mathrm{H}, \mathrm{H}-\mathrm{l}$, $\mathrm{OH}), 3.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$, 0.08 (s, $6 \mathrm{H}, \mathrm{Si} M e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 355.2303$, found $355.2313(M+H)$.

3,5-Dideoxy-6-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-O-(1-methyl-ethylidene)-1-O-(phenylmethyI)-D-erythro-hexitol (56). Compound 56 was prepared (95\%) in the same manner as described for 69 from 68a and was identical by the usual criteria with a sample obtained from $(-)$-xylose.

Acknowledgment. We wish to express our many thanks to Drs. George Furst and John Dykins of this department for their superb NMR and mass spectroscopic assistance. This work was financially supported by the National Institutes of Health, Merck Sharp \& Dohme, and Hoffmann-La Roche.

Total Synthesis of Amphoteronolide B and Amphotericin B. 2. Total Synthesis of Amphoteronolide B^{\dagger}

K. C. Nicolaou,* R. A. Daines, T. K. Chakraborty, and Y. Ogawa
Contribution from the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104. Received October 19, 1987

Abstract

The efficient coupling of building blocks 4-8 by four aldehyde-phosphonate type condensation reactions and an esterification reaction leading to advance intermediate keto phosphonate aldehyde 39 are reported. The intramolecular keto phosphonate-aldehyde condensation leading to heptaenone $\mathbf{3}$ and its elaboration to amphoteronolide B (1) are also described.

In the preceding paper ${ }^{1}$ we discussed the significance and retrosynthetic analysis of amphotericin B (1) and amphoteronolide B (2) (Scheme I) and the stereocontrolled construction of key building blocks 5-8 required for the total synthesis of these targets. In this paper we describe (a) the coupling of these building blocks and their elaboration to the cyclic heptaenone 3 (Scheme I), a key intermediate for the synthesis of both amphoteronolide B (2) and amphotericin B (1), and (b) the total synthesis of amphoteronolide B (2). ${ }^{2,3}$

Results and Discussion

Synthesis of Advanced Key Intermediate, Hydroxy Aldehyde 15. The plan for the synthesis of advanced intermediate 15 from

[^0]aldehyde 5 involved construction of the polyene chain by sequential reaction with two units of phosphonate 4 (Scheme I). The details of the execution of this strategy are presented in Scheme II. Thus, condensation of 5 with the lithio derivative of $(E, E)-(\mathrm{EtO})_{2} \mathrm{P}$ (O) $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCOOEt}(4)^{4}$ led predominantly to the

[^1]Scheme I

E, E, E-triene ester 9 (90%, small amounts of the Z isomer of the newly generated double bond were removed chromatographically). Reduction of ester 9 with DIBAL led quantitatively to alcohol $\mathbf{1 0}$, which was then oxidized to aldehyde 11 with $\mathrm{MnO}_{2}(98 \%)$. Reiteration of the condensation process with the litho anion of 4 attached a second triene unit onto trienal 11, furnishing ester $12(60 \%$, small quantities of the Z isomer of the newly generated double bond formed in this reaction were removed chromatographically), which was subjected to acid-catalyzed depyranylation, leading to hydroxy ester $\mathbf{1 3}$ in 82% yield. Finally, DIBAL reduction of 13 followed by MnO_{2} oxidation led to the requisite hydroxy aldehyde 15 in 98% overall yield.

Synthesis of Advanced Key Intermediate, Keto Phosphonate Carboxylic Acid 16. The strategy for the construction of keto phosphonate carboxylic acid $\mathbf{1 6}$ was based on the retrosynthetic analysis presented in Scheme III. According to this analysis, 16 was to be derived from 29 by appropriate functional group manipulations and introduction of a C_{1} unit carrying the dimethyl phosphonate group. With the focus on the phosphonate-aldehyde condensation as the potential coupling reaction, the following retrosynthetic steps were devised. Thus, the tetrahydropyran system in $\mathbf{2 9}$ was dismantled by rupture of the indicated strategic bond unravelling to the olefin 27 bearing a methylthio group at C-13. The design of this key intermediate would not only allow regiospecific ring closure to 29 but also points to its further disconnection to phosphonate $\mathbf{2 5}$ and aldehyde 8. Proceeding with the retrosynthesis, it was reasoned that the $\mathrm{C}-8$ hydroxyl group could be derived by stereoselective reduction of a carbonyl group and that introduction of a double bond in conjugation with this carbonyl would allow a further phosphonate-aldehyde condensation to be used in the coupling process. Thus, functional group manipulation of $\mathbf{2 5}$ led to enone $\mathbf{1 7}$ as a potential precursor to $\mathbf{2 5}$. Finally, enone 17 was dissected as indicated in Scheme III, leading to building blocks $\mathbf{6}$ and 7 as starting points for the synthesis. Scheme IV outlines the stereocontrolled construction of keto phosphonate carboxylic acid 16 beginning with the coupling of building blocks 6 and 7 (Scheme I). Thus, condensation of 6 and 7 under basic conditions (NaH -DME) smoothly furnished the

[^2] hart, K. E. C.; Huisman, H. O. Recl. Trav. Chim. 1973, 683.

Figure 1. CPK molecular model of ketone 18.

Figure 2. ORTEP drawing of compound 20.
expected conjugated enone ($\mathbf{1 7}$, Scheme III) in 94% yield, hydrogenation $\left(5 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOAc}, \mathrm{H}_{2}\right)$ of which led to the saturated ketone 18 (100%). Molecular modeling studies on this ketone suggested that reduction should occur from the side opposite to that of the adjacent acetonide, particularly by a sterically demanding reagent attacking a frozen conformation of $\mathbf{1 8}$ (see Figure 1). The degree of chelation control, solvent, temperature, and precise nature of the reagent were not a priori predictable, and, therefore, a systematic study was launched to define conditions to provide the desired stereoselectivity. Table I details the results of these experiments, clearly showing the success of the sterically demanding reagent-frozen conformation hypothesis (L-Selectride (Aldrich), THF, $-110^{\circ} \mathrm{C}, 98 \%$ yield, single stereoisomer detected

Scheme II ${ }^{\boldsymbol{a}}$

${ }^{a}$ Synthesis of Hydroxyaldehyde 15. Reagents and conditions: (a) 1.3 equiv each of $(E, E)-(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCOOEt}-$ LDA, THF, $-78 \rightarrow 0{ }^{\circ} \mathrm{C}, 90 \%$; (b) 5.0 equiv of DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}, 100 \%$; (c) 10 equiv of $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 96 \%$; (d) 2.0 equiv each of $(E, E)-(\mathrm{EO}){ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCOOEt}-\mathrm{LDA}, \mathrm{THF}$, $-78 \rightarrow 0^{\circ} \mathrm{C}, 60 \%$; (e) PPTS catalyst, $\mathrm{MeOH}, 45^{\circ} \mathrm{C}, 82 \%$; (f) 5.0 equiv of DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 100 \%$; (g) 10.0 equiv of $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}, 98 \%$.

Table I. Stereoselectivity in the Reduction of Ketone 18

reagent ${ }^{a, b}$	conditions	product ratio (18a:18b) ${ }^{c}$
L-Selectride	THF $/ 0^{\circ} \mathrm{C}$	3:1
L-Selectride	THF/-78 ${ }^{\circ} \mathrm{C}$	5:1
L-Selectride	$\mathrm{Et}_{2} \mathrm{O} /-78{ }^{\circ} \mathrm{C}$	1:1.3
L-Selectride DME/-65 ${ }^{\circ} \mathrm{C}$	DME $/-65^{\circ} \mathrm{C}$	3:1
L-Selectride	THF/ $110^{\circ} \mathrm{C}$	1:0
KS-Selectride	THF $/ 0^{\circ} \mathrm{C}$	2:1
KS-Selectride	THF/-78 ${ }^{\circ} \mathrm{C}$	2:1
$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$	$\mathrm{Et}_{2} \mathrm{O} / 0^{\circ} \mathrm{C}$	1:1
$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$	$\mathrm{Et}_{2} \mathrm{O} /-78^{\circ} \mathrm{C}$	1:1
BH_{3}-THF	THF/ $/ 0^{\circ} \mathrm{C}$	2.3:1
$\mathrm{Sia}_{2} \mathrm{BH}$	THF/ $/ 0^{\circ} \mathrm{C}$	1.5:1
$t-\mathrm{BuNH}_{2}-\mathrm{BH}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0^{\circ} \mathrm{C}$	1:1
t - $\mathrm{BuNH}_{2}-\mathrm{BH}_{3}$	THF/-40 ${ }^{\circ} \mathrm{C}$	1:1
DIBAL	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /-78{ }^{\circ} \mathrm{C}$	2.7:1
DIBAL	THF/-78 ${ }^{\circ} \mathrm{C}$	1:1
DIBAL	$\mathrm{PhCH}_{3} /-78^{\circ} \mathrm{C}$	1.2:1

${ }^{a} 2.2$ equiv of reducing reagent used. ${ }^{b} 2.0$ equiv of $\mathrm{Ac}_{2} \mathrm{O}, 3.0$ equiv of DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$. ${ }^{c}$ Ratios determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (acetate signals) at 250 MHz and are subject to the detection limits of this technique.
by ${ }^{1} \mathrm{H}$ NMR spectroscopy at 250 MHz). This stereochemical outcome is also in line with the Felkin-Ahn model; the observed increase in selectivity at lower temperature may reflect temperature dependence on $\Delta \Delta G^{\ddagger}$ for the diastereomeric reduction pathways. The stereochemical outcome of this reduction was confirmed by X-ray crystallographic analysis ${ }^{5}$ (see Figure 2) of derivative 20 prepared from 19 as indicated in Scheme IV. The striking similarity of the solid state conformation of $\mathbf{2 0}$ (Figure 2) with the "frozen" conformation of $\mathbf{1 8}$ (Figure 1) is noteworthy. Compound 19 was then functionalized appropriately so as to allow its coupling to fragment 8 as follows. Engagement of the sec-

[^3]Scheme III ${ }^{\boldsymbol{a}}$

${ }^{a}$ Retrosynthetic analysis of $\mathrm{C}-1-\mathrm{C}-20$ fragment, keto phosphonate carboxylic acid 16
ondary hydroxyl group of 19 with the more stable $t-\mathrm{Bu}_{\mathrm{Ph}}^{2} \mathrm{Si}$ group ${ }^{6}$ (96%) followed by selective removal of the $t-\mathrm{BuMe}_{2} \mathrm{Si}$ group (84%) from the primary hydroxyl furnished compound 22 via 21. Intermediate 22 was then converted to iodide 23 (98\%) via its mesylate, and thence to dimethyl phosphonate 24 by displacement with sodium dimethyl phosphite ${ }^{7}$ (97\%). It is worth noting that the usual Arbuzov conditions $\left.\left[(\mathrm{MeO})_{3} \mathrm{P}, 110^{\circ} \mathrm{C}, 48 \mathrm{~h}\right)\right]$ produced $\mathbf{2 4}$ from $\mathbf{2 1}$ in only 50% yield. Sulfenation of the anion of $\mathbf{2 4}$ (LDA, $\mathrm{Me}_{2} \mathrm{~S}_{2}$) then led to a diastereomeric mixture of the α thiomethyl phosphonate 25 (78%, ca. $1: 1$ by ${ }^{1} \mathrm{H}$ NMR analysis). Condensation of the anion of 25 (LDA-THF) with aldehyde 8

[^4](7) Sturtz, G. Bull. Soc. Chim. Fr. 1964, 2340.

Scheme IV ${ }^{a}$

${ }^{a}$ Synthesis of keto phosphonate carboxylic acid 16ab. Reagents and conditions: (a) $7,1.1$ equiv of $\mathrm{NaH}, \mathrm{DME}, 0 \rightarrow 45{ }^{\circ} \mathrm{C}$, then, 1.1 equiv $6,-65$ $\rightarrow-10^{\circ} \mathrm{C}, 4 \mathrm{~h}, 94 \%$; (b) $5 \% \mathrm{Pd}-\mathrm{C}$ catalyst, $\mathrm{H}_{2}, \mathrm{EtOAc}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 100 \%$; (c) 2.2 equiv of L-Selectride, THF, $-110^{\circ} \mathrm{C}, 3 \mathrm{~h}, 98 \%$; (d) 1.5 equiv of $n-\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$ and then 1.1 equiv of $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}, 1.5$ equiv of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$ catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 90 \%$; (e) 2.0 equiv of t - $\mathrm{BuPh}_{2} \mathrm{SiCl}, 5.0$ equiv of imidazole, DMF, $50^{\circ} \mathrm{C}, 4 \mathrm{~h}, 96 \%$; (f) 1.2 equiv of $n-\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 84 \%$; (g) 1.1 equiv of MsCl , 1.3 equiv of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-15^{\circ} \mathrm{C}$, 15 min , and then excess NaI , acetone, $25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 98 \%$ overall; (h) 2.2 equiv of (MeO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}-2.2$ equiv of $\mathrm{NaH}, \mathrm{DME}-$ DMF (3:2), $45^{\circ} \mathrm{C}, 1 \mathrm{~h}, 97 \%$; (i) 1.1 equiv of LDA, THF, $-78^{\circ} \mathrm{C}$, and then 1.1 equiv of MeSSMe $-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}, 78 \%$; (j) 1.2 equiv of LDA, THF, $-78^{\circ} \mathrm{C}$, and then 1.2 equiv of aldehyde $8,-78 \rightarrow 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$; (k) 10 equiv of $n-\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 96 \%$; (l) 0.25 equiv of $\mathrm{PPTS}^{\circ}, \mathrm{CH}_{2} \mathrm{Cl} 2$, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 75 \%$; (m) 1.1 equiv of NBS, $3 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10 ; 1), 0^{\circ} \mathrm{C}, 10 \mathrm{~min}, 98 \%$; (n) 1.1 equiv of $t-\mathrm{BuCOCl}, \mathrm{pyr}, 0^{\circ} \mathrm{C}, 4$ $\mathrm{h}, 86 \%$; (0) 2.5 equiv of t - $\mathrm{BuMe} \mathrm{C}_{2} \mathrm{SiCl}, 7.0$ equiv of imidazole, $\mathrm{DMF}, 45^{\circ} \mathrm{C}, 3 \mathrm{~h}, 96 \%$, and then 2.5 equiv of DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 98 \%$; (p) 5.0 equiv of PDC, DMF, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}$, and then $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 82 \%$ overall; (q) $10 \% \mathrm{Pd}-\mathrm{C}$ catalyst, H_{2}, absolute $\mathrm{EtOH}, 25^{\circ} \mathrm{C}, 48 \mathrm{~h}$, and then 2.0 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 5.0$ equiv of $\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 67 \%$ overall; (r) $10 \% \mathrm{Pd}-\mathrm{C}$ catalyst, H_{2}, absolute $\mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 76 \%$; (s) 5.0 equiv of imidazole, $\mathrm{MeCN}, 25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 76 \%$; (t) 1.1 equiv of t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}, 1.3$ equiv of 2,6 -lutidine, $\mathrm{CHCl}_{2}, 10 \mathrm{~min}, 0{ }^{\circ} \mathrm{C}, 80 \%$; (u) 1.1 equiv of aqueous $\mathrm{LiOH}\left(1.0 \mathrm{M}\right.$), THF, $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$, and then $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 98 \%$ overall; (v) 5.0 equiv of PDC, DMF, $25{ }^{\circ} \mathrm{C}, 10 \mathrm{~h}$, and then $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 76 \%$ overall; (w) 5.0 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 95 \%$, and then 5.0 equiv of PDC, DMF, $10 \mathrm{~h}, 79 \%$; (x) 3.0 equiv of $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me} ; 3.0$ equiv of $n-\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$, and then $38 \mathrm{ab},-78^{\circ} \mathrm{C}, 15 \mathrm{~min}, 62 \%$.
proceeded smoothly to give the coupling product 26 (90%, mixture of geometrical isomers, ca. 1:1 by ${ }^{1} \mathrm{H}$ NMR analysis) containing the required vinyl sulfide moiety. Complete desilylation of 26 then led to the triol 27 in 96% yield. The next task in the sequence
was to engage the secondary hydroxyl group as a ketal with methanol, to produce 29 cd . Direct approaches to this intermediate with mercury salts and other reagents proved fruitless. An indirect two-step approach was, therefore, devised to effect this trans-
formation. Thus, 27 was converted to mixed thioketal $\mathbf{2 8} \mathrm{cd}$ by acid-catalyzed (TsOH•pyr, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) cyclization (75%, mixture of isomers by ${ }^{1} \mathrm{H}$ NMR analysis) and then to methylketal 29cd by exposure to NBS-MeOH (98%, ca. 1-3:1 mixture of isomers by ${ }^{1} \mathrm{H}$ NMR analysis). The cyclization reaction $\mathbf{2 7} \rightarrow \mathbf{2 8 c d}$ produced at least two isomeric compounds (TLC and ${ }^{1} \mathrm{H}$ NMR analysis) whereas the exchange reaction $\mathbf{2 8 c d} \rightarrow \mathbf{2 9 c d}$ led cleanly to two isomers initially assumed to be methoxy anomers. ${ }^{2}$ Subsequent studies, however, including ${ }^{1} \mathrm{H}$ NMR decoupling experiments (see the Experimental Section) strongly suggested the indicated 8,9-and 9,11-acetonide isomeric structures. The single methoxy group stereochemistry was tentatively assigned by analogy to the corresponding amphotericin B center. The ratio of these two regioisomers varied somewhat, but the compound was taken through the rest of the sequence to the keto phosphonate acid 16ab, which proved identical with degradative material. 3,9 Differentiation between the primary and secondary hydroxyls of 29cd was secured via monopivalate ester 30cd (86%), which was silylated (96%) and selectively deprotected to afford primary alcohol 31ab (98\%). Conversion of 31ab to methyl ester 32ab was achieved by PDC ${ }^{8}$ oxidation followed by diazomethane treatment (82% overall yield). The remaining sequence presented a number of protecting group and selectivity challenges. These challenges were met by careful selection of reagents and conditions. Thus, the benzyl ether protecting group in 32ab was selectively removed by closely monitored hydrogenolysis ($\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}$) and replaced with an acetate group leading to 33ab (67% overall yield) so as to allow subsequent differentiations. Subsequent removal of the benzylidene group from 33ab under more persistent hydrogenolysis conditions ($\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$) furnished diol 34ab (76% yield). The primary hydroxyl group in 34ab was temporarily engaged with the carboxyl group as a δ-lactone by treatment with imidazole giving 35ab (76%). Subsequent silylation of the remaining free hydroxyl group in 35ab led to the disilyl ether 36ab in 80% yield. The highly sensitive lactone functionality of $\mathbf{3 6 a b}$ was then dismantled, without acetate removal, by aqueous base, and the resulting hydroxy acid was converted to the dimethyl ester 37ab by sequential methylation $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ and PDC^{8} oxidation, followed by a second methylation ($\mathrm{CH}_{2} \mathrm{~N}_{2}, 74 \%$ overall yield). The acetate group was then readily removed from 37ab ($\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}, 95 \%$), and the carboxylic acid 38ab was obtained by PDC^{8} oxidation of the resulting primary alcohol (79%). Finally, differentiation of the three carboxyl groups in 38ab (anion formation at C-1, steric congension at C-16) was observed in the one-step, chemoselective conversion of this intermediate to the requisite keto phosphonate carboxylic acid 16ab (62%). ${ }^{9,10}$

With the two advanced key intermediates 15 and $16 a b$ available, we then turn our attention to the serious issue of coupling them and constructing the macrocyclic framework of amphoteronolide B (2) and amphotericin B (1).

Construction of the Macrocycle and Completion of the Synthesis of Amphoteronolide B. As already discussed ${ }^{1}$ heptaenone $\mathbf{3}$ was targeted as the common precursor to both amphotericin B(1) and amphoteronolide B (2). This macrocyclic subtarget could be reached from advanced key intermediates 15 and 16 by one of two alternative ways. The first approach would involve the formation of the ester linkage followed by macrocyclization by an intramolecular keto phosphonate-aldehyde condensation. A second approach would entail the construction of the polyenone system first, followed by formation of the macrocyclic ring by lactonization. Past experience in these laboratories ${ }^{11}$ pointed to the former approach as the most promising sequence to reach 3. Thus, esterification of $\mathbf{1 6 a b}$ with 15 (DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%$) produced the open chain precursor 39ab (Scheme V). The crucial

[^5]macrocyclization step was then successfully carried out under mild basic conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3}-18\right.$-crown- 6 , toluene, $65^{\circ} \mathrm{C}^{11}$ or DBU$\mathrm{LiCl}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}^{12}$), leading to heptaenone 3 ab (70% yield). ${ }^{9,10}$ From this point on, the total synthesis of amphotericin $B(1)$ and amphoteronolide B (2) diverge. The former sequence will be discussed in the following paper ${ }^{13}$ whereas the remaining steps to amphoteronolide B(2) are described below.

For the conversion of heptaenone 3 to amphoteronolide B (2), stereoselective carbonyl reduction and deprotection were required. After some experimentation, it became apparent that the most successful route would involve deprotection of all secondary hydroxyls prior to the generation of the rather labile allylic hydroxyl group followed by final demethylations. More specifically the completion of the synthesis followed the sequence outlined in Scheme V. Thus desilylation of the major compound 3a (HF. pyr-MeOH) afforded triol $40(55 \%)$, which was then subjected to deacetonization ($\mathrm{CSA}-\mathrm{MeOH}$), leading to heptahydroxyheptaenone 41 (50% yield based on ca. 50% conversion). Sodium borohydride mediated reduction of 41 then led, stereospecifically, to amphoteronolide B derivative 42 (95\%). The $19(R)$ configuration of the reduction product was confirmed by comparisons to materials derived from amphotericin B (1) by degradation and CD studies as already discussed in a preceding paper in this series. ${ }^{9}$ Finally, sequential demethylation of 42 (CSA, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 97 \%$) followed by LiOH hydrolysis (80% yield based on ca. 75% conversion) led to amphoteronolide $\mathbf{B}(2)$ via its methyl ester $\mathbf{4 3}$, identical with a sample derived from amphotenicin B (1). ${ }^{9}$

Conclusion

The efficient coupling of building blocks 4-8 was achieved by employing four aldehyde-phosphonate type condensation reactions and an esterification reaction producing the acyclic keto phosphonate aldehyde precursor 39ab. The crucial macrocycle formation was demonstrated to proceed efficiently via intramolecular keto phosphonate-aldehyde condensation producing the 38 membered ring 3. The remarkable success of this reaction, considering the complexity and rather large size of the ring produced, is, at least partially, due to the minimization of the degrees of freedom in 39ab imposed by (a) the double bonds, (b) the substituents on the backbone, and (c) the three ring systems present in the acyclic precursor. Finally a stereoselective reduction and final elaboration completed the first total synthesis of amphoteronolide $\mathbf{B (2)}$. Although this target was reached from the major isomer 3a, similar chemistry should be applicable to the conversion of $\mathbf{3 b}$ to $\mathbf{2}$. The elaboration of heptaenone $\mathbf{3}$ to amphotericin $B(1)$ is described in the following paper. ${ }^{13}$

Experimental Section

General Methods. See ref 9 .
Ethyl ($2 E, 4 E, 6 E, 8 S, 9 R, 10 S, 11 S)-9-[($ tert - Butyldimethylsilyl)oxy $]-8,10$-dimethyl-11-[(tetrahydro-2H-pyran-2-yl) oxy $]-2,4,6$-dodecatrienoate (9). To a stirred solution of freshly distilled diisopropylamine (DIPA, $0.816 \mathrm{~g} \equiv 1.13 \mathrm{~mL}, 8.06 \mathrm{mmol}$) in dry THF (3.2 mL) at $-78^{\circ} \mathrm{C}$ under argon was dropwise added $n-\operatorname{BuLi}(3.22 \mathrm{~mL}, 2.5 \mathrm{M}$ solution in hexane, 8.05 mmol). After 5 min , the mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at that temperature for 15 min before it was cooled back again to $-78^{\circ} \mathrm{C}$. A solution of phosphonate $4(2.23 \mathrm{~g}, 8.06 \mathrm{mmol})$ in dry THF (5 mL) was added dropwise. After 15 min of being stirred at $-78^{\circ} \mathrm{C}$, the aldehyde $5(2.22 \mathrm{~g}, 6.2 \mathrm{mmol})$ in dry THF (5 mL) was dropwise added to the stirred phosphonate anion solution. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and then at $0^{\circ} \mathrm{C}$ for 15 min before it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The product was extracted with ether (40 mL), the organic extract was washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica, 10% ether in petroleum ether) gave the product as a mixture of two THP anomers ($2.68 \mathrm{~g}, 90 \%$). 9 (mixture of THP isomers, ca. 1:1 ratio): colorless oil; $R_{f} 0.16$ and 0.21 (silica, 10% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-6.5^{\circ}\left(c 3.49, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 2960$, 2940, 2860, 1705 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1620 ($\mathrm{s}, \mathrm{C}=\mathrm{C}$), $1460,1370 \mathrm{~cm}^{-1}$; UV
(I2) Blanehette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. P.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
(I3) Nicolaou, K. C.; Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. J. Am. Chem. Soc., accompanying paper in this issue.

Scheme $\mathbf{V}^{\boldsymbol{a}}$

15

a

$42, R_{1}=R_{2}=M e$
$43, R_{1}=H, R_{2}=M$
$=43, R_{1}=H, R_{2}$
$2, R_{1}=R_{2}=H$
${ }^{0}$ Total synthesis of amphoteronolide B (2). Reagents and conditions: (a) 1.0 equiv of $\mathbf{1 6 a b}, 1.2$ equiv of $\mathbf{1 5}, 1.2$ equiv of DCC, 0.3 equiv of DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2},(1.0 \mathrm{M}), 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 70 \%$; (b) 6.0 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}, 13.0$ equiv of 18 -crown- 6 , toluene (0.001 M), $65^{\circ} \mathrm{C}, 14 \mathrm{~h}$, or 5.0 equiv of LiCl , 5.5 equiv of DBU, MeCN (0.01 M), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 70 \%$; (c) excess $\mathrm{HF}-\mathrm{pyr}, \mathrm{MeOH}, 45^{\circ} \mathrm{C}, 48 \mathrm{~h}, 55 \%$; (d) 0.1 equiv of $\mathrm{CSA}, \mathrm{MeOH}, 0 \rightarrow 25{ }^{\circ} \mathrm{C}, 1$ $\mathrm{h}, 50 \%$ based on 50% conversion; (e) 10 equiv of $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 95 \%$; (f) 0.1 equiv of $\mathrm{CSA}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(9: 1), 0 \rightarrow 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 97 \%$; (g) 10 equiv of $1 \mathrm{~N} \mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, 0 \rightarrow 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 80 \%$ based on 75% conversion.
(hexane) $\lambda_{\max } 297\left(E_{1 \mathrm{~cm}} 1 \% 829\right), 308 \mathrm{~nm}(718) ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.28$ (dd, $J=15.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.50 (dd, $J=$ $14.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $6.27-5.77$ (m, 4 H , olefinic), $4.60,4.51$ (m, ca. $1: 1$ ratio, $1 \mathrm{H}, \mathrm{OCHO}$), 4.17 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), 3.94-3.35 (m, 4 H, CH2O, CHO), $2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.95-1.40(\mathrm{~m}, 7$ $\left.\mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 1.27\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COOCH}_{3} \mathrm{CH}_{3}\right), 1.15-0.75(\mathrm{~m}$, $18 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}, \mathrm{CH}_{3}$), 0.030-0.010 (singlets,, 6 H total, $\mathrm{Si} \mathrm{Me}_{2}$); HRMS (CI) calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H} 481.3349$, found $481.3431(\mathrm{M}+\mathrm{H})$.
($2 E, 4 E, 6 E, 8 S, 9 R, 10 S, 11 S)-9-[($ tert -Butyldimethylsilyl) oxy $]-8,10-$ dimethyl-11-[(tetrahydro-2H-pyran-2-yl)oxy $]$ 2,4,6-dodecatrien-1-ol (10). To a stirred solution of ester $9(2.64 \mathrm{~g}, 5.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was dropwise added DIBAL ($27.5 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane, 27.5 mmol). The reaction mixture was stirred at that temperature for 0.5 h before it was quenched with $\mathrm{MeOH}(0.6 \mathrm{~mL})$. It was then diluted with ether $(100 \mathrm{~mL})$ and shaken with saturated aqueous potassium-sodium tartrate (60 mL). The organic layer was washed with brine (60 mL), dried (MgSO_{4}), and concentrated. Flash column chromatography (silica, 40% ether in petroleum ether) gave allylic alcohol $\mathbf{1 0}$ as a mixture of two THP anomers $(2.41 \mathrm{~g}, 100 \%) .10$ (mixture of THP isomers, ca. 1:1 ratio): colorless oil; $R_{f} 0.21$ (silica, 40% ether in
petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-9.2^{\circ}\left(\mathrm{c} 1.53, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3610$ (m, OH), 3000, 2950, 2930, 2880, 2860, 1635 (s, C=C), 1460, 1380 cm^{-1}; UV (hexane) $\lambda_{\max } 261\left(E_{1 \mathrm{~cm}} 1 \% 1070\right), 270(1370), 281 \mathrm{~nm}(1052)$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 6.55-5.30(\mathrm{~m}, 6 \mathrm{H}$, olefinic), 4.61 and 4.51 (multiplets, ca. $1: 1$ ratio, 1 H total, OCHO), 4.20-3.38 (m, 6 $\left.\mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.95-1.40(\mathrm{~m}$, $\left.7 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 1.15-0.80\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}, \mathrm{CH}_{3}\right), 0.030,0.010$, and -0.020 (singlets, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}$ + H 439.3244, found $439.3285(\mathrm{M}+\mathrm{H})$.
($2 E, 4 E, 6 E, 8 S, 9 R, 10 S, 11 S$) $-9-[($ tert-ButyldimethylsilyI) oxy $]-8,10-$ dimethyl-11-[(tetrahydro-2H-pyran-2-yl)oxy]-2,4,6-dodecatrienal (11). To a stirred solution of allylic alcohol $10(2.19 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(4.35 \mathrm{~g}, 50 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 12 h . It was then filtered through a pad of Celite and concentrated. Flash column chromatography (silica, 20% ether in petroleum ether) gave aldehyde 11 as a mixture of THP anomers ($2.14 \mathrm{~g}, 98 \%$). 11 (mixture of THP isomers, ca. 1:1 ratio): colorless oil; $R_{f}=0.20$ and 0.24 (silica, 20% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+29.7^{\circ}\left(c 2.13, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 2960,2940,2900,2860$, $1675(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1615(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1475,1470,1380 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right)$
$\lambda_{\max } 327 \mathrm{~nm}\left(E_{\text {lcm }} 1 \% 785\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 9.53$ and 9.52 (doublets, ca. $1: 1$ ratio, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ total, aldehyde), 7.10 (dd, $J=15.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 6.62 (dd, $J=15.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 6.40-5.95 (m, 4 H , olefinic), 4.60 and 4.52 (multiplets, ca. 1:1 ratio, 1 H total, OCHO), 3.95-3.35 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHO}$), 2.50 (m, $1 \mathrm{H}, \mathrm{H}-34$), 1.91-1.47 (m, $7 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$), 1.15-0.80 (m, $18 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}$, CH_{3}), 0.020 , and -0.010 (singlets, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 437.3087$, found $437.3047(\mathrm{M}+\mathrm{H})$.

Ethyl ($2 E, 4 E, 6 E, 8 E, 10 E, 12 E, 14 S, 15 R, 16 S, 17 S$)-15-[(tert-Butyldimethylsilyl) oxy]-14,16-dimethyl-17-[(tetrahydro-2H-pyran-2-yl) oxy]-2,4,6,8,10,12-octadecahexaenoate (12). Aldehyde 11 ($2.10 \mathrm{~g}, 4.80 \mathrm{mmol}$) was converted to the hexaene ester 12 via the same procedure as described above for the preparation of ester 9 . The product was purified by flash column chromatography (silica, 20% ether in petroleum ether) to give $\mathbf{1 2}$ as a mixture of THP anomers $(1.61 \mathrm{~g}, 60 \%) .12$ (mixture of THP isomers, ca. 1:1 ratio): yellow oil; $R_{f} 0.34$ and 0.39 (silica, 20% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+11.6^{\circ}\left(c 1.80, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $\nu_{\max } 2960,2940,2900,2860,1700(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1625(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1570$, $1470,1380 \mathrm{~cm}^{-1}$; UV-vis (hexane) $\lambda_{\max } 402\left(E_{1 \mathrm{~cm}} 1 \% 1160\right), 380(1320)$, 361 (948), $342 \mathrm{~nm}(510) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.30$ (dd, $J=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $6.58(\mathrm{dd}, J=14.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $6.50-5.68$ (m, 9 H , olefinic), 5.83 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 4.61 and 4.51 (multiplets, ca. 1:1 ratio, 1 H total, OCHO), 4.18 (q, $\left.J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.00-3.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHO}\right)$, $2.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.95-1.40\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$ $3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $1.15-0.80\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Si}\right.$-tert- $\mathrm{Bu}, \mathrm{CH}_{3}$), 0.030, 0.020 , and -0.010 (singlets, 6 H total, $\mathrm{SiM} e_{2}$); HRMS (FAB) calcd for C_{33} $\mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si} 558.3740$, found $558.3800\left(\mathrm{M}^{+}\right)$

Ethyl ($2 E, 4 E, 6 E, 8 E, 10 E, 12 E, 14 S, 15 R, 16 S, 17 S$)-15-[(tert-Butyl-dimethylsilyl)oxy]-17-hydroxy-14,16-dimethyl-2,4,6,8,10,12-octadecahexaenoate (13). To a stirred solution of THP ether 12 ($1.56 \mathrm{~g}, 2.80$ mmol) in dry $\mathrm{MeOH}(11 \mathrm{~mL}$) was added pyridinium p-toluenesulfonate (PPTS, $70 \mathrm{mg}, 0.28 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$ under argon. The reaction mixture was heated at $45^{\circ} \mathrm{C}$ for 3 h . After being cooled to room temperature the mixture was poured onto saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and extracted with ether (100 mL). The ether extract was washed with brine (40 mL), dried (MgSO_{4}), and concentrated. Flash column chromatography (silica, 30% ether in petroleum ether) gave pure hexaene ester 13 $(1.09 \mathrm{~g}, 82 \%) .13$: yellow amorphous solid; $R_{f}=0.19$ (silica, 30% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-13.9^{\circ}\left(\mathrm{c} 0.86, \mathrm{CHCl}_{3}\right)$: IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }}$ $3500(\mathrm{~m}, \mathrm{OH}), 3000,2970,2940,2860,1700(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1620(\mathrm{~s}, \mathrm{C}=\mathrm{C})$ $1575,1470,1370 \mathrm{~cm}^{-1}$; UV-vis (hexane) $\lambda_{\max } 401\left(E_{1 \mathrm{~cm}} 1 \% 1570\right), 379$ (1790), 360 (1317), 340 nm (733); 'H NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$), TMS) $\delta 7.30$ (dd, $J=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $6.58(\mathrm{dd}, J=14.4,10.8$ $\mathrm{Hz}, 1 \mathrm{H}$, olefinic), 4.58-6.04 (m, 8 H , olefinic), 5.83 (d, $J=15.2 \mathrm{~Hz}$, 1 H , olefinic), 5.73 (dd, $J=14.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 4.18 (q, $J=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.50(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHO}), 3.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$ $1.27\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 1.11(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.02\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.81(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 0.080 and 0.050 (singlets, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si} 474.3165$, found $474.3225\left(\mathrm{M}^{+}\right)$
($2 E, 4 E, 6 E, 8 E, 10 E, 12 E, 14 S, 15 R, 16 S, 17 S)-15-[($ tert - Butyldi-methylsilyl)oxy]-14,16-dimethyl-2,4,6,8,10,12-octadecahexaene-1,17-diol (14). Hexaene ester $13(1.04 \mathrm{~g}, 2.20 \mathrm{mmol})$ was reduced with DIBAL $(11.0 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane, 11.0 mmol) in the same manner as described above for the preparation of alcohol 10. The resulting unstable alcohol 14 was used directly for the next step without further purification 14: yellow amorphous solid; $R_{f} 0.13$ (silica, 50% ether in petroleum ether).
($2 E, 4 E, 6 E, 8 E, 10 E, 12 E, 14 S, 15 R, 16 S, 17 S$)-15-[(tert-Butyldime-thylsilyl)oxyl-17-hydroxy-14,16-dimethyl-2,4,6,8,10,12-octadecahexaenal (15). The crude alcohol 14 (ca. 2.20 mmol) prepared above was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ and oxidized with $\mathrm{MnO}_{2}(1.91 \mathrm{~g}, 22.0 \mathrm{mmol})$ as described above for aldehyde 11. Flash column chromatography (silica, 40% ether in petroleum ether) gave pure hexaene aldehyde $15(0.91 \mathrm{~g}$, 96% overall from 13). 13: yellow amorphous solid; $R_{f} 0.10$ (silica, 40% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+4.9^{\circ}\left(c 0.78, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }}$ $3500(\mathrm{~m}, \mathrm{OH}), 3000,2960,2940,2860,1670(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1610(\mathrm{~s}, \mathrm{C}=\mathrm{C})$, $1570,1470.1380 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 407 \mathrm{~nm}\left(E_{1 \mathrm{~cm}} 1 \% 1295\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS, amphotericin B numbering) $\delta 9.54$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aldehyde), 7.11 (dd, $J=15.0,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23$), 6.69 (dd, $J=14.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $6.51-6.08$ (m, 9 H , olefinic), 5.77 (dd, $J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-33$), $3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-37), 3.52$ (t $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-35), 2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-34), 1.64$ (m, $1 \mathrm{H}, \mathrm{H}-36$), $1.11\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $\left.\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH})_{3}\right), 0.080$ and 0.050 (singlets, 6 H total, SiMe $)^{\prime}{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.35, 151.77, 142.77, 139.90, 139.02, 136.86, 135.61, 131.79, 131.24, $131.06,130.77,130.55,129.63,80.95,69.75,44.10,43.04,26.03,20.73$,
18.21, 15.66, -4.05 ; $\mathrm{HRMS}(\mathrm{CI})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si} 430.2903$, found $430.2831\left(\mathrm{M}^{+}\right)$.

Enone 17. To a magnetically stirred cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of keto phosphonate $7(8.11 \mathrm{~g}, 19.1 \mathrm{mmoL})$ in dry DME (85 mL) was added $\mathrm{NaH}(0.772 \mathrm{~g}, 60 \%$ in mineral oil, 19.3 mmol$)$ under argon. The reaction mixture was warmed to $45^{\circ} \mathrm{C}$ and stirred for 20 min followed by cooling to $-60^{\circ} \mathrm{C}$. A solution of aldehyde $6(5.37 \mathrm{~g}, 19.3 \mathrm{mmol})$ in dry DME (20 mL) was then added dropwise. The reaction mixture was allowed to warm slowly to $-10^{\circ} \mathrm{C}$ over 4 h and maintained at that temperature for an addition 0.5 h . The reaction mixture was then diluted with ether (250 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ and brine (30 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and purification by flash column chromatography (silica, 30% ether in petroleum ether) afforded pure enone 17 ($10.3 \mathrm{~g}, 94 \%$). 17: colorless oil; $R_{f} 0.32$ (silica, 40% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+12.5^{\circ}\left(c 0.24, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3015,2970,2870,1700$ and $1650(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1390 \mathrm{~cm}^{-1}$; ${ }^{\prime} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.36-7.28$ (m, 5 H , aromatic), 6.91 (dd, $J=15.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \beta$-vinyl), 6.69 (dd, $J=15.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \alpha$-vinyl), 4.51 (m, 2 H, CHO), $4.53,4.47$ (doublets, $J=12.0 \mathrm{~Hz}$, 2 H , benzyl), 4.10 (m, $2 \mathrm{H}, \mathrm{CHO}$), 3.76-3.48 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 1.81-1.18 (m, $8 \mathrm{H}, \mathrm{CH}_{2}$), 1.37 and 1.43 (singlets, 12 H total, acetonides), 0.89 (s, $9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.047$ (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$); HRMS (CI) calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{Si}$ 576.3482 , found $576.3451\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 66.63$; H, 9.08. Found: C, 66.43; H, 9.25 .

Ketone 18. To a magnetically stirred solution of enone $\mathbf{1 7}(9.90 \mathrm{~g}, 17.1$ $\mathrm{mmol})$ in EtOAc (100 mL) was added $5 \% \mathrm{Pd}-\mathrm{C}(500 \mathrm{mg})$. The reaction mixture was stirred under a H_{2} atmosphere for 3 h . The H_{2} was purged with argon, and the solution was filtered through a pad of Celite. Evaporation and purification by flash column chromatography (silica, 30% ether in petroleum ether) gave pure ketone 18 ($9.92 \mathrm{~g}, 100 \%$). 18: colorless oil; $R_{f} 0.32$ (silica, 40% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+23.3^{\circ}$ (c $\left.0.24, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3010,2960,2870,1720(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.39-7.17(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $4.52,4.46$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 4.32 (dd, J $=12.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{CHO}), 4.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHO}), 3.85-3.47(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{CHO}, \mathrm{CH}_{2}\right), 2.63\left(\mathrm{~m}, 2 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right), 1.80-1.10\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45$, 1.39 , and 1.35 (singlets, 12 H total, acetonides), $0.89(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$, $0.044\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} \mathrm{Me}_{2}\right)$; HRMS (CI) calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}-\mathrm{Me} 563.3404$, found $563.3306(\mathrm{M}-\mathrm{Me})$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 66.40 ; \mathrm{H}$, 9.40. Found: C, 66.56: H, 9.61

Alcohol 19. A magnetically stirred solution of ketone 18 ($9.92 \mathrm{~g}, 17.1$ mmol) in dry THF (350 mL) under argon was cooled to $-110^{\circ} \mathrm{C}$. To this was slowly added L-Selectride (Aldrich; $37.6 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 37.6 mmol) by dropwise addition. The mixture was stirred and allowed to warm slowly to $-78^{\circ} \mathrm{C}$ over a period of 3 h , at which time it was then warmed to $0^{\circ} \mathrm{C}$. It was then treated with aqueous NaOH ($30 \mathrm{~mL}, 6 \mathrm{~N}$ solution, 180 mmol) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(25 \mathrm{~mL}$) and vigorously stirred for 0.5 h . The reaction mixture was diluted with ether (500 mL), and the organic layer was separated. The organic phase was washed with 10% aqueous $\mathrm{NaHSO}_{3}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 50$ mL), and brine (50 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration and removal of sec-butyl alcohol in vacuo provided essentially pure alcohol 19 (9.37 $\mathrm{g}, 98 \%$), which could be used without further purification. An analytical sample was purified by flash column chromatography (silica, 50% ether in petroleum ether) to afford pure alcohol 19. 19: colorless oil: $R_{f} 0.28$ (silica, 50% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+6.7^{\circ}\left(c 0.21, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3600(\mathrm{w}, \mathrm{OH}), 3010,2960,2870,1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}$, aromatic), 4.53, 4.47 (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl) $4.09-3.38$ (m, $9 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), $2.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.79-1.15\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 1.43$, 1.42, 1.39, and 1.37 (singlets, 12 H total, acetonides), $0.89(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{Si}-t-\mathrm{Bu}$), 0.046 (s, $6 \mathrm{H}, \mathrm{Si} M e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{7} \mathrm{Si}+\mathrm{H}$ 581.3874 , found $581.3892(\mathrm{M}+\mathrm{H})$.
\boldsymbol{p}-Chlorobenzenesulfonate 20. To a magnetically stirred solution of alcohol 19 ($150 \mathrm{mg}, 0.258 \mathrm{mmol}$) in THF (2 mL) was added $n-\mathrm{Bu}_{4} \mathrm{NF}$ ($0.40 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 0.40 mmol) at ambient temperature. After the reaction was complete (1 h), the solution was diluted with EtOAc (60 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and brine (5 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and flash column chromatography (silica, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave pure diol ($120 \mathrm{mg}, 100 \%$). Diol; white semisolid; $R_{f} 0.26$ (silica, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]^{20}{ }_{\mathrm{D}}+4.6^{\circ}$ (c 0.71, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3540(\mathrm{~m}, \mathrm{OH}), 3000,2960,2880,1390 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.33$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 4.53. 4.47 (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 4.14-3.39 (m, $9 \mathrm{H}, \mathrm{CHO}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.80(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.52(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, 1.87-1.05 (m, $12 \mathrm{H}, \mathrm{CH}_{2}$) $1.46,1.42,1.40$, and 1.37 (singlets, 12 H total, acetonides); HRMS (CI) calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{7}+\mathrm{H} 467.3009$, found 467.3069 ($\mathrm{M}+\mathrm{H}$).

To a magnetically stirred solution of the above prepared diol (120 mg , 0.258 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL}$) were added triethylamine (39.2 mg
$\equiv 0.54 \mathrm{~mL}, 0.387 \mathrm{mmol}$) and DMAP ($1.6 \mathrm{mg}, 0.0129 \mathrm{mmol}$) under argon. The solution was cooled to $0^{\circ} \mathrm{C}$, and 4 -chlorobenzenesulfonyl chloride ($60.0 \mathrm{mg}, 0.284 \mathrm{mmol}$) was added. The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$ and then diluted with EtOAc (60 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL}), 5 \%$ aqueous $\mathrm{HCl}(5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and brine (10 mL), and dried (MgSO_{4}). Evaporation and purification by flash column chromatography (silica, $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded pure benzenesulfonate $20(149 \mathrm{mg}, 90 \%)$. Recrystallization from EtOAc produced a suitable crystal for X-ray analysis. 20: colorless needles; mp $149-150^{\circ} \mathrm{C}$ (EtOAc); $R_{f} 0.35$ (silica, 5% MeOH in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right),[\alpha]^{20}{ }_{\mathrm{D}}+10.5^{\circ}\left(c 0.55, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }}$ $3600(\mathrm{w}, \mathrm{OH}), 3000,2960,2880,1450,1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.9(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.6(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.32(\mathrm{~m}$, 5 H , aromatic), 4.50 (s, 2 H , benzyl), $4.05-3.35\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOSO}, \mathrm{Ar}), 2.70(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 2.05-1.11$ (m, 12 H , CH_{2}) $1.41,1.36$, and 1.33 (singlets, 12 H total, acetonides); HRMS (FAB) calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{SCl}+\mathrm{H} 641.2551$, found $641.2527(\mathrm{M}+\mathrm{H})$.

Disilyl Ether (21). Alcohol 19 ($9.73 \mathrm{~g}, 16.7 \mathrm{mmol}$) was dissolved in DMF (20 mL) and treated with imidazole ($5.80 \mathrm{~g}, 85 \mathrm{mmol}$) and t $\mathrm{BuPh}_{2} \mathrm{SiCl}^{(9.4 \mathrm{~g} \equiv 8.9 \mathrm{~mL}, 34.2 \mathrm{mmol}) \text { under argon. The reaction }}$ mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h . After the mixture was cooled to room temperature, the reaction was quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$ and stirred for an additional 10 min . It was then diluted with ether (100 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine (20 mL), and dried (MgSO_{4}). Evaporation and purification by flash column chromatography (silica, 10% ether in petroleum ether) afforded pure disilyl ether 21 ($13.1 \mathrm{~g}, 96 \%$). 21: colorless oil; $R_{f} 0.31$ (silica, 20% ether in petroleum ether); $[\alpha]^{20}-3.1^{\circ}\left(c 0.35, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3010,2970,2870,1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta 7.75-7.25(\mathrm{~m}, 15 \mathrm{H}$, aromatic), 4.52, 4.46 (doublets, $J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}$, benzyl), $3.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHO}), 3.50\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right)$, $1.70\left(\mathrm{dq}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57\left(\mathrm{dq}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45$ (m, $4 \mathrm{H}, \mathrm{CH}_{2}$) $, 1.38-0.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31,1.30,1.23$, and 1.17 (singlets, 12 H total, acetonides), $1.03(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.87(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{Si}-t-\mathrm{Bu}$), 0.022 (s, $6 \mathrm{H}, \mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{48} \mathrm{H}_{74} \mathrm{O}_{7} \mathrm{Si}_{2}$ + H 819.5051, found $819.5080(\mathrm{M}+\mathrm{H})$.

Primary AIcohol 22. A magnetically stirred solution of disilyl ether $21(13.5 \mathrm{~g}, 16.5 \mathrm{mmol})$ in THF (165 mL) was cooled to $0^{\circ} \mathrm{C}$, to this was slowly added a tetrabutylammonium fluoride solution ($20 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 20 mmol), and the mixture was maintained under argon at $0^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was diluted with ether (300 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and brine (20 mL), and dried (MgSO_{4}). Evaporation and flash column chromatography (silica, 60% ether in petroleum ether) provided pure alcohol $22(9.77 \mathrm{~g}, 84 \%)$. 22: colorless oil; $R_{f} 0.23$ (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{D}-4.3^{\circ}(c 0.61$, CHCl_{3}); IR (CHCl_{3}) $\nu_{\text {max }} 3510(\mathrm{~m}, \mathrm{OH}), 3000,2950,2860,1390 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.73-7.27$ (m, 15 H , aromatic), $4.53,4.47$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), $4.05-3.45(\mathrm{~m}, 9 \mathrm{H}$ $\mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 2.54 (dd, $\left.J=6.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right), 1.80-1.10(\mathrm{~m}, 12$ $\mathrm{H}, \mathrm{CH}_{2}$) , 1.32, 1.31, 1.28 , and 1.20 (singlets, 12 H total acetonides), 1.04 (s, $9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}$); HRMS (FAB) calcd for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{O}_{7} \mathrm{Si}+\mathrm{H} 705.4187$, found $705.4191(\mathrm{M}+\mathrm{H})$

Iodide 23. To a magnetically stirred solution of alcohol $22(8.00 \mathrm{~g}$, 11.3 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) was added triethylamine (1.79 g $\equiv 2.4 \mathrm{~mL}, 17.0 \mathrm{mmol}$) under argon. The reaction mixture was cooled to $-15^{\circ} \mathrm{C}$ and treated with methanesulfonyl chloride (1.68 g , $\equiv 1.2 \mathrm{~mL}$, 14.7 mmol). After being stirred for 15 min , the mixture was diluted with ether (200 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL}), 5 \%$ aqueous $\mathrm{HCl}(20$ mL), saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine (20 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation gave essentially pure mesylate, which was used without further purification.

Mesylate (ca. 11.3 mmol) prepared above was dissolved in dry acetone $(75 \mathrm{~mL})$ and treated with an excess of $\mathrm{NaI}(16.0 \mathrm{~g}, 106 \mathrm{mmol})$ under an argon atmosphere. After being stirred for 8 h , the reaction mixture was diluted with ether (300 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and brine (30 mL), and dried (MgSO_{4}). Evaporation and purification by flash column chromatography (silica, 10% ether in petroleum ether) produced pure iodide 23 ($9.02 \mathrm{~g}, 98 \%$). 23: colorless oil; $R_{f} 0.30$ (silica, 20% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+9.8^{\circ}\left(c \mathrm{c} .23, \mathrm{CHCl}_{3}\right)$; IR (CH$\mathrm{Cl}_{3}$) $\nu_{\text {max }} 3000,2950,2860,1370 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.73-7.27$ (m, 15 H , aromatic), 4.53, 4.47 (doublets, $J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}$, benzyl), 3.94-3.47 (m, $\left.7 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.20(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{I}\right), 1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \mathrm{H}_{2}\right), 1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.5-1.0\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.32, 1.31, 1.26, and 1.18 (singlets, 12 H total, acetunides), 1.05 ($\mathrm{s}, 9 \mathrm{H}$, $\mathrm{Si}-t-\mathrm{Bu}$); HRMS (FAB) calcd for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{SiI}-t-\mathrm{Bu} 757.2421$, found, 757.2404 (M - $t-\mathrm{Bu}$)

Phosphonate 24. To a magnetically stirred solution of dimethyl phosphite ($2.67 \mathrm{~g} \equiv 2.2 \mathrm{~mL}, 24.2 \mathrm{mmol}$) in dry DME (25 mL) and dry DMF (15 mL) was added $\mathrm{NaH}(0.968 \mathrm{~g}, 60 \%$ in mineral oil, 24.2 mmol)
under argon at $25^{\circ} \mathrm{C}$. The mixture was heated to $45^{\circ} \mathrm{C}$, stirred for 0.5 h, and then cooled to room temperature. To this was added iodide 23 ($9.02 \mathrm{~g}, 11.0 \mathrm{mmol}$) in DME (20 mL), and the mixture was once again heated to $45^{\circ} \mathrm{C}$. After 1 h , the reaction was complete and the solution was cooled and diluted with ether (300 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20$ mL) and brine (20 mL), and dried (MgSO_{4}). Removal of the solvent and purification by flash column chromatography (silica, $2.5 \% \mathrm{MeOH}$ in ether) gave pure phosphonate $24(8.50 \mathrm{~g}, 97 \%)$. 24: colorless oil; R_{f} 0.25 (silica, $2.5 \% \mathrm{MeOH}$ in ether); $[\alpha]^{20}{ }_{\mathrm{D}}+4.3^{\circ}(c 0.28, \mathrm{MeOH})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3000,2960,2870,1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta 7.72-7.27$ (m, 15 H , aromatic), $4.54,4.48$ (doublets, $J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}$, benzyl), $4.09-3.49$ (m, $7 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 3.72 (d, $J=10.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{3}\right), 1.94-0.98$ ($\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}$), $1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}(\mathrm{O})\right.$), 1.32, 1.31, 1.22, and 1.18 (singlets, 12 H total, acetonides), 1.04 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}$); HRMS (FAB) calcd for $\mathrm{C}_{44} \mathrm{H}_{65} \mathrm{O}_{9} \mathrm{PSi}+\mathrm{H} 797.4214$, found $797.4182(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{65} \mathrm{O}_{9} \mathrm{PSi}: \mathrm{C}, 66.30 ; \mathrm{H}, 8.22 ; \mathrm{P}, 3.89$. Found: $\mathrm{C}, 66.06$; H, 7.99; P, 3.67

Methylthio Phosphonate 25. A solution of phosphonate 24 (8.13 g , 10.2 mmol) in dry THF (100 mL) was degassed by bubbling a stream of argon through the solution for $20-30 \mathrm{~min}$. This solution of phosphonate 22 was then added to a stirred solution of LDA (11.4 mmol), prepared from diisopropylamine (DIPA, $1.15 \mathrm{~g} \equiv 1.6 \mathrm{~mL}, 11.4 \mathrm{mmol}$) and $n-\mathrm{BuLi}(7.1 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, 11.4 mmol), in THF (10 mL) at $-78^{\circ} \mathrm{C}$ under argon. The solution was stirred for 0.5 h and then transferred via canula into a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Me}_{2} \mathrm{~S}_{2}(1.05 \mathrm{~g}$ $\equiv 51.0 \mathrm{~mL}, 11.2 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with ether (250 mL). The organic layer was separated and washed with 5% aqueous $\mathrm{HCl}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine (20 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and flash column chromatography (silica, $1 \% \mathrm{MeOH}$ in ether) afforded pure α-methylthio phosphonate $25(6.71 \mathrm{~g}, 78 \%)$ as a diastereomeric mixture (ca. 1:1 ratio). 25: colorless oil; $R_{f} 0.23$ (silica, ether); $\left[\alpha{ }^{20}{ }_{\mathrm{D}}\right.$ $+4.6^{\circ}\left(c 0.24, \mathrm{CHCl}_{3}\right.$, ca. $2: 1$ ratio $)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3000,1960,2860$, $1430,1380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.72-7.28(\mathrm{~m}$, 15 H , aromatic), $4.54,4.48$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 4.15-3.49 (m, $\left.7 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.80(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O})$ OCH_{3}), $3.70\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}(\mathrm{O}) \mathrm{OCH}_{3}\right.$), 2.95 and 2.80 (multiplets, ca. 2:1 ratio, 1 H total, $\mathrm{CHP}(\mathrm{O})$), 2.24 and 2.22 (singlets, ca. 2:1 ratio, 3 H total, epimeric $\mathrm{S} M e$), 1.97-0.98 (m, $12 \mathrm{H}, \mathrm{CH}_{2}$), 1.30, 1.23, and 1.15 (singlets, 12 H total, acetonides), $1.02(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$; HRMS (FAB) calcd for $\mathrm{C}_{45} \mathrm{H}_{67} \mathrm{O}_{9} \mathrm{PSSi}+\mathrm{H} 843.4091$, found 843.4019 (M + H). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{67} \mathrm{O}_{9} \mathrm{PSSi}$: C, $64.10 ; \mathrm{H}, 8.01 ; \mathrm{P}, 3.67 ; \mathrm{S}, 3.80$. Found: C, 64.40; H, 7.82; P, 3.45; S, 3.91

Vinyl Sulfide 26. A solution of phosphonate $25(7.26 \mathrm{~g}, 8.61 \mathrm{mmol})$ in dry THF (40 mL) was degassed by bubbling a stream of argon through the solution for $20-30 \mathrm{~min}$. The solution of phosphonate 23 was then added to a stirred solution of LDA (10.7 mmol), prepared from diisopropylamine (DIPA, $1.08 \mathrm{~g} \equiv 1.5 \mathrm{~mL}, 10.7 \mathrm{mmol}$) and $n-\mathrm{BuLi}(6.7$ $\mathrm{mL}, 1.6 \mathrm{M}$ solution in hexane, 10.7 mmol), in dry THF (5 mL), at -78 ${ }^{\circ} \mathrm{C}$ under argon. After the mixture was stirred for 0.5 h , a solution of aldehyde $8(5.08 \mathrm{~g}, 10.3 \mathrm{mmol})$, which had also been degassed in a similar fashion, in dry THF (15 mL), was dropwise added to the solution containing the phosphonate anion. The cooling bath was removed, and the reaction mixture was allowed to warm to room temperature. After a total reaction time of 2 h , the mixture was diluted with ether (200 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent and flash column chromatography (silica, 30% ether in petroleum ether) produced pure vinyl sulfide 26 ($9.37 \mathrm{~g}, 90 \%$) as a mixture of geometrical isomers (ca. 1:1 ratio). 26: white amorphous solid; $R_{f} 0.16$ and 0.19 (silica, 20% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-48.5^{\circ}$ (c $1.06, \mathrm{CHCl}_{3}$, more polar isomer); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3000,2960,2940,2860,1475,1385 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$, more polar isomer) $\delta 7.75-7.25(\mathrm{~m}, 10 \mathrm{H}$, aromatic), 5.62 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 5.52 ($\mathrm{s}, 1 \mathrm{H}$ benzylidene), 4.81 (dd, $J=10.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), $4.52,4.46$ (doublets, $J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}$, benzyl), 4.35 (dd, $J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 4.0-3.4 (m, $11 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 2.45 (dd, $J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, allylic), 2.35 (dd, $J=15.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}$, allylic), $2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S} M e), 1.80-0.85(\mathrm{~m}, 13 \mathrm{H}$, $\mathrm{CH}, \mathrm{CH}_{2}$), $1.30,1.28,1.23$, and 1.20 (singlets, 12 H total, acetonides), $1.02,0.88$, and 0.87 (singlets, 27 H total, $\mathrm{Si}-t-B u$), $0.73,0.030$, and 0.011 (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{69} \mathrm{H}_{106} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{~S}$ $+\mathrm{NH}_{4}$ 1228.7158, found 1228.7130(M+NH4). Anal. Calcd for $\mathrm{C}_{69} \mathrm{H}_{106} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{~S}: \mathrm{C}, 68.38 ; \mathrm{H}, 8.82 ; \mathrm{S}, 2.64$. Found: $\mathrm{C}, 68.19 ; \mathrm{H}, 8.92$; S, 2.65 .

Diol 27. To a magnetically stirred solution of vinyl sulfide 26 (9.37 g, 7.73 mmol) in THF (10 mL) under argon was added a solution of tetrabutylammonium fluoride ($80 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 80 mmol), and stirring was continued for 10 h . The reaction mixture was diluted
with EtOAc (250 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and brine (20 mL), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and purification of flash column chromatography (silica, 75% EtOAc in petroleum ether) afforded pure triol 27 ($5.53 \mathrm{~g}, 96 \%$) as a mixture of geometrical isomers (ca. 1:1 ratio). 27: white amorphous solid; $R_{f} 0.38$ (silica, EtOAc); $[\alpha]^{20}{ }_{\mathrm{D}}-28.5^{\circ}(c$ $0.73, \mathrm{CHCl}_{3}$, ca. 2.3:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3500(\mathrm{~m}, \mathrm{OH}), 3010$, $2960,1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.51-7.27$ (m, 10 H , aromatic), 5.72 and 5.35 (doublets, ca. 2.3:1 ratio, $J=9.0 \mathrm{~Hz}, 1$ H total, vinyl), 5.55 and 5.51 (singlets, ca. 2.3:1 ratio, 1 H total, benzylidene), 4.89 and 4.63 (double doublets, ca. 2.3:1 ratio, $J=9.5 \mathrm{~Hz}$, 1 H total, CHO), $4.52,4.46$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 4.35 (dd, $J=11.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), $4.25-3.40\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right)$, 3.23 and 3.10 (doublets, ca. $2.3: 1$ ratio, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$ total, OH), 3.0 S ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OH}$), 2.82 (dd, $J=14.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}$, allylic) 2.68 (dd, $J=$ 14.6, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$, allylic), $2.40-2.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$), $2.27(\mathrm{~s}, 3 \mathrm{H}$, SMe) $, 1.80-1.10\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 1.47,1.43,1.40$, and 1.38 (singlets, 12 H total, acetonides); HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{~S}$ 744.3907, found: 744.3901 (\mathbf{M}^{+}).

Methyl 19-O-Benzyl-4 ${ }^{1}$,5-O-benzylidene-2,4,6,8,10,13,14,16,18-nona-deoxy-4-(hydroxymethyl)-9,11:15,17-di-O-isopropylidene-7-thio-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranoside and Isomer (28cd). To a magnetically stirred solution of vinyl sulfide $27(2.60 \mathrm{~g}, 3.48 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (340 mL) under argon was added pyridinium p-toluenesulfonate (PPTS, $220 \mathrm{mg}, 0.87 \mathrm{mmol}$). Stirring was continued for 24 h at which time the reaction was quenched with saturated aqueous NaH $\mathrm{CO}_{3}(30 \mathrm{~mL})$ and the organic layer was washed with brine (30 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and purification by flash column chromatography (silica, $1 \% \mathrm{MeOH}$ in ether) gave pure mixed thioketal 28cd $(1.94 \mathrm{~g}, 75 \%)$ as a mixture of at least two isomers. 28cd: white amorphous solid; $R_{f} 0.26$ and 0.30 (silica, $1 \% \mathrm{MeOH}$ in ether); $[\alpha]^{20}{ }_{\mathrm{D}}$ $-51.5^{\circ}\left(c 0.56, \mathrm{CHCl}_{3}\right.$, ca. $2: 1$ ratio $)$, IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3500(\mathrm{~m}, \mathrm{OH})$, $3000,2940,2920,1380 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $7.50-7.28$ ($\mathrm{m}, 10 \mathrm{H}$, aromatic), 5.61 and 5.59 (singlets, ca. 2:1 ratio, 1 H total, benzylidene), $4.52,4.46$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl) 4.30-3.40 (m, $13 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), $2.77(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.73$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OH}, 2.30-1.15\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.01$ and 1.95 (singlets, ca. $2: 1$ ratio, 3 H total, $\mathrm{S} M e$), $1.45,1.42$, and 1.36 (singlets, 12 H total, acetonides); HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{~S}+\mathrm{H} 745.3985$, found 745.3947 ($\mathrm{M}+\mathrm{H}$).

Methyl 19-O-Benzyl-4 ,5-O-benzylidene-2,4,6,8,10,13,14,16,18-nona-deoxy-4-(hydroxymethyl)-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranoside and Isomer (29cd). A solution of thioketal 28 cd ($1.68 \mathrm{~g}, 2.26 \mathrm{mmol}$) and ground 3 A molecular sieves (5 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was stirred under argon for 0.5 h . To this was added anhydrous MeOH (10 mL), and the mixture was cooled to $0^{\circ} \mathrm{C}$. After an additional 10 min , freshly recrystallized N -bromosuccinimide ($40.2 \mathrm{mg}, 2.26 \mathrm{mmol}$) was added, and the reaction mixture was allowed to stir for 10 min . The mixture was diluted with ether (250 mL), filtered through a pad of Celite, washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL}), 10 \%$ aqueous $\mathrm{KOH}(3 \times 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and brine (20 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and flash column chromatography (silica, $2.5 \% \mathrm{MeOH}$ in ether) provided pure methyl ketal $29 \mathrm{~cd}(1.61 \mathrm{~g}, 98 \%)$ as a mixture of two isomers. 29 cd : white amorphous solid; $R_{f} 0.20$ and 0.38 (silica, $2.5 \% \mathrm{MeOH}$ in ether); $[\alpha]^{20} \mathrm{D}$ -34.4° (c $0.75, \mathrm{CHCl}_{3}$, ca. 1.5:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3500(\mathrm{~m}, \mathrm{OH})$, $3000,2950,2880,1385 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ 7.50-7.27 (m, 10 H , aromatic), 5.60 and 5.58 (singlets, ca. 1.5:1 ratio, 1 H total, benzylidene), $4.52,4.46$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 4.20-3.41 (m, $\left.13 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.24$ and 3.20 (singlets, ca. 1.5:1 ratio, 3 H total, OMe), $2.77(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.72(\mathrm{~m}, 1 \mathrm{H}$, OH), 2.22-1.14 (m, $17 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), 1.41 and 1.36 (singlets, 12 H total, acetonides) ; HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{11}+\mathrm{H} 729.4214$, found $729.4202(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{11}: \mathrm{C}, 67.56 ; \mathrm{H}, 8.30$. Found: C, 67.50; H, 8.39. The two isomers 29c and 29d were chromatographically separated, and their diacetates were prepared under standard conditions for ${ }^{1} \mathrm{H}$ NMR studies. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of the acetate derived from 29 d exhibited signals at $\delta 4.85$ and 3.95 for (amphotericin B numbering) H-8 and H-9, respectively which were coupled to each other (decoupling, $J_{8,9}=5 \mathrm{~Hz}$). Such coupling was absent in the ${ }^{1} \mathrm{H}$ NMR spectrum of the acetate of 29 c thus confirming the structural assignments of these isomers

Methyl 19-O-Benzyl-4 ${ }^{1}$,5-O-benzylidene-2,4,6,8,10,13,14,16,18-nona-deoxy-4-(hydroxymethyl)-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-/yxo-7-nonadeculo-7,3-pyranoside 1-Pivalate and Isomer (30cd), Trimethylacetyl chloride ($0.293 \mathrm{~g} \equiv 0.30 \mathrm{~mL}, 2.43 \mathrm{mmol}$) was slowly added to a stirred solution of alcohol $29 \mathrm{~cd}(1.61 \mathrm{~g}, 2.21 \mathrm{mmol})$ in dry pyridine (20 mL) at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was maintained at $0^{\circ} \mathrm{C}$ for 4 h and then diluted with ether (200 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{CuSO}_{4}(2 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine (20 mL), and dricd (MgS -
O_{4}). Evaporation and purification by flash column chromatography (silica, 70% ether in petroleum ether) afforded pure pivalate 30 cd (1.56 $\mathrm{g}, 86 \%$) as a mixture of isomers. 30cd: white foam; $R_{f} 0.12$ and 0.22 (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-39.5^{\circ}\left(c 0.59, \mathrm{CHCl}_{3}\right.$, ca. 1.6:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3520(\mathrm{~m}, \mathrm{OH}), 3000,1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1390$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.50-7.27$ (m, 10 H , aromatic), 5.60 and 5.58 (singlets, ca. $1.6: 1$ ratio, 1 H total, benzylidene), $4.52,4.47$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), $4.30-3.35(\mathrm{~m}, 13 \mathrm{H}$, $\mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 3.20 and 3.12 (singlets, ca. 1.6:1 ratio, 3 H total, OCH_{3}), 2.22 and 2.20 (double doublets, ca. 1.6:1 ratio, $J=13.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$ total, H-6), 2.05-1.95 (m, 1 H, H-6'), 2.05-1.10 (m, $15 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), 1.41, 1.37, and 1.35 (singlets, 12 H total, acetonides), 1.20 (s, $9 \mathrm{H}, t-\mathrm{Bu}$); HRMS (FAB) calcd for $\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{O}_{12} \mathrm{H} \mathrm{H} 811.4631$, found 811.4626 (M - H).

Methyl 19-O-Benzyl-4 ${ }^{1}$,5-O-benzylidene-12-O-(tert-butyldimethyl-silyl)-2,4,6,8,10,13,14,16,18-nonadeoxy-4-(hydroxymethyl)-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranoside and Isomer (31ab). Hydroxy pivalate ester $30 \mathrm{~cd}(1.56 \mathrm{~g}, 1.92 \mathrm{mmol}$) was dissolved in dry DMF (4 mL) and treated with imidazole ($920 \mathrm{mg}, 13.4$ $\mathrm{mmol})$ and $t-\mathrm{BuMe} \mathrm{Mi}_{2} \mathrm{SiCl}(720 \mathrm{mg}, 4.80 \mathrm{mmol})$ under argon. The reaction mixture was heated to $45^{\circ} \mathrm{C}$ and stirred for 3 h . The mixture was cooled to room temperature, diluted with ether (100 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine (20 mL), and dried (MgSO_{4}). Removal of the solvent and purification of flash column chromatography (silica, 30% ether in petroleum ether) provided pure silyloxy pivalate ($1.71 \mathrm{~g}, 96 \%$) as a mixture of isomers. Silyloxy pivalate: white foam; $R_{f} 0.17$ (silica, 30% ether in petroleum ether) ; $[\alpha]^{20}{ }_{\mathrm{D}}-32.2^{\circ}\left(c 1.05, \mathrm{CHCl}_{3}\right.$, ca. 1.2:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }}$ $3000,2960,1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta 7.50-7.27$ (m, 10 H , aromatic), 5.59 and 5.58 (singlets, ca. 1.2:1 ratio), 1 H total, benzylidene), $4.52,4.46$ (doublets, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 4.32-3.40 (m, $13 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 3.25 and 3.11 (singlets, ca. 1.2:1 ratio, 3 H total, OCH_{3}), 3.23 and 2.25 (double doublets, ca. 1.2:1 ratio, $J=13.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}$ total, H-6), 2.10 (dd, $J=13.4,4.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-6^{\prime}$), 1.93-1.11 (m, $15 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), 1.39 and 1.36 (singlets, 12 H total, acetonides), $1.20(\mathrm{~s}, 9 \mathrm{H}, t-B u), 0.89$ and 0.87 (singlets, ca. 1.2:1 ratio, 9 H total, $\mathrm{Si}-t-\mathrm{Bu}$), $0.10,0.083$ and 0.045 (singlets, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{O}_{12} \mathrm{Si}$ - H 925.5497, found $925.5459(\mathrm{M}-\mathrm{H})$.

To a magnetically stirred solution of the above prepared silyloxy pivalate ($1.71 \mathrm{~g}, 1.83 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was added DIBAL ($5.5 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane, 5.5 mmol). After 15 min , the reaction was quenched with EtOAc (5 mL) and warmed to room temperature. The mixture was diluted with ether (100 mL), washed with saturated aqueous potassium sodium tartrate (20 mL) and brine (20 mL), and dried (MgSO_{4}). Evaporation and flash column chromatography (silica, 80% ether in petroleum) afforded pure primary alcohol 31ab ($1.51 \mathrm{~g}, 98 \%$) as a mixture of isomers. 31ab: white amorphous solid; $R_{f} 0.22$ (silica, 80% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}$ $-24.8^{\circ}\left(c 0.21, \mathrm{CHCl}_{3}, \mathrm{ca} .1 .2: 1\right.$ ratio $)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3520(\mathrm{~m}, \mathrm{OH})$, $3000,2960,1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{~Hz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.50-7.25$ (m, 10 H , aromatic), 5.57 ($\mathrm{s}, 1 \mathrm{H}$, benzylidene), $4.52,4.46$ (doublets, J $=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, benzyl), 4.16-3.44 (m, $\left.13 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.16(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.25(\mathrm{dd}, J=14.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, $2.05\left(\mathrm{dd}, J=14.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 1.90-1.10\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right)$, 1.39, 1.34, and 1.32 (singlets, 12 H total, acetonides), 0.87 (s, 9 H , $\mathrm{Si}-t-\mathrm{Bu}$), 0.088 and 0.068 (singlets, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{47} \mathrm{H}_{74} \mathrm{O}_{11} \mathrm{Si}+\mathrm{H} 843.5079$, found $843.5066(\mathrm{M}+\mathrm{H})$. Anal. Caled for $\mathrm{C}_{47} \mathrm{H}_{74} \mathrm{O}_{11}$ Si: $\mathrm{C}, 66.95 ; \mathrm{H}, 8.85$. Found: $\mathrm{C}, 67.26 ; \mathrm{H}, 8.86$.

Methyl [Methyl 19-O-benzyl-4 ${ }^{1}$,5- O-benzylidene-12- O-(tert -butyldi-methylsilyl)- $2,4,6,8,10,13,14,16,18$-nonadeoxy-4-(hydroxymethy)-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranosid]onate and Isomer (32ab). To a magnetically stirred solution of alcohol 31ab ($1.45 \mathrm{~g}, 1.72 \mathrm{mmol}$) in dry DMF (7 mL) under argon was added PDC ($3.20 \mathrm{~g}, 8.60 \mathrm{mmol}$). The reaction mixture was stirred for 10 h and then diluted with DMF (7 mL) and poured into ether $(150 \mathrm{~mL})$. The ethereal solution was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$ and brine (20 mL). The solvent volume was reduced to about 10 mL and then cooled to $0^{\circ} \mathrm{C}$. This solution was then treated with an ethereal solution of diazomethane followed by removal of the excess diazomethane (stream of argon) and drying (MgSO_{4}). Evaporation and flash column chromatography (silica, 50% ether in petroleum ether) produced pure methyl ester 32ab ($1.23 \mathrm{~g}, 82 \%$) as a mixture of isomers. 32ab: white amorphous solid; $R_{f} 0.12$ (silica, 40% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}$ -33.4° (c $1.05, \mathrm{CHCl}_{3}$, ca. 1.2:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3000,2960$, $2860,1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1385 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.50-7.27$ (m, 10 H , aromatic), 5.59 and 5.58 (singlets, ca. 1.2:1 ratio, 1 H total, benzylidene), $4.50(\mathrm{~s}, 2 \mathrm{H}$, benzyl), $4.15-3.48(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CHO}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.70 (s, 3 H , methyl ester), 3.22 and 3.17 (singlets, ca. 1.2:1 ratio, 3 H total, OCH_{3}), $2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOMe}\right), 2.30(\mathrm{~m}, 1 \mathrm{H}$,

H-6), 2.10 (dd, $J=15.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 1.92-1.05 (m, $13 \mathrm{H}, \mathrm{CH}$, CH_{2}) $1.41,1.39,1.35,1.33$, and 1.32 (singlets, 12 H total, acetonides), 0.88 and 0.87 (singlets, ca. $1.2: 1$ ratio, 9 H total, $\mathrm{Si}-t-\mathrm{Bu}$), $0.094,0.078$ and 0.043 (singlets, 6 H total, Si- $t-\mathrm{Me}_{2}$); HRMS (FAB) calcd for C_{48} $\mathrm{H}_{74} \mathrm{O}_{12} \mathrm{Si}-\mathrm{H} 869.4871$, found $869.4903(\mathrm{M}-\mathrm{H})$.

Methyl [Methyl 19-O-benzyl-4 ${ }^{1}$,5-O-benzylidene-12-O-(tert-butyldi-methylsilyl)- $2,4,6,8,10,13,14,16,18$-nonadeoxy-4-(hydroxymethyl)-9,11:15,17-di- O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranosidjonate 19-Acetate and Isomer (33ab). A solution of benzyl ether 32ab ($2.02 \mathrm{~g}, 2.32 \mathrm{mmol}$) in absolute $\mathrm{EtOH}(100 \mathrm{~mL})$ and 10% $\mathrm{Pd}-\mathrm{C}(200 \mathrm{mg})$ was vigorously stirred under a H_{2} atmosphere for 48 h . The H_{2} was purged with argon, and the solution was filtered through a pad of Celite. Evaporation and flash column chromatography (silica, 80% ether in petroleum ether) provided pure primary alcohol (1.21 g , 67%) as a mixture of isomers. Primary alcohol: white amorphous solid; $R_{f} 0.23$ (silica, ether); $[\alpha]^{20}{ }_{\mathrm{D}}-35.2^{\circ}\left(c 0.60, \mathrm{CHCl}_{3}\right.$, ca. 1.2:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3500(\mathrm{~m}, \mathrm{OH}), 3000,2860,3860,1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1385$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.50-7.32(\mathrm{~m}, 5 \mathrm{H}$, aromatic), 5.60 and 5.59 (singlets, ca. 1.2:1 ratio), 1 H total, benzylidene), $4.20-3.50\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.71$ and 3.70 (singlets, ca. 1.2:1 ratio, 3 H total, methyl ester), 3.22 and 3.18 (singlets, ca. 1.2:1 ratio, 3 H total, OCH_{3}), $3.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOMe}\right), 2.27$ (m, 1 H, H-6), 2.10 (dd, $J=14.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 1.95-0.80 (m, $13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), $1.45,1.44,1.39,1.37,1.36$, and 1.33 (singlets, 12 H total, acetonides), 0.89 and 0.87 (singlets, ca. $1.2 ; 1$ ratio, 9 H total, $\mathrm{Si}-t-\mathrm{Bu}), 0.096,0.080$ and 0.047 (singlets, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{12} \mathrm{Si}-\mathrm{H} 779.4402$, found $779.4420(\mathrm{M}-\mathrm{H})$.

The primary alcohol prepared above ($1.21 \mathrm{~g}, 1.55 \mathrm{mmol}$) and DMAP ($944 \mathrm{mg}, 7.74 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under argon and cooled to $0^{\circ} \mathrm{C}$. This solution was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.316 \mathrm{~g} \equiv 0.29$ $\mathrm{mL}, 3.10 \mathrm{mmol}$) and stirred for 10 min . The reaction mixture was diluted with ether (200 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine (20 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and purification by flash column chromatography (silica, 50% ether in petroleum ether) gave pure acetate $33 \mathrm{ab}(1.27 \mathrm{~g}, 100 \%)$ as a mixture of methoxy anomers (ca. 1:1 ratio). 33ab: white amorphous solid; $R_{f} 0.30$ (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{D}-31.1^{\circ}$ (c 0.64, CHCl_{3}, ca. 1.1:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3000,2960,2860,1740$ (s $\mathrm{C}=\mathrm{O}$), $1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.50-7.32$ (m, 5 H , aromatic), 5.60 and 5.58 (singlets, ca. 1.1:1 ratio, 1 H total, benzylidene), $4.16\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right), 4.10-3.50(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHO}$ $\mathrm{CH}_{2} \mathrm{O}$), 3.71 and 3.70 (singlets, ca. 1.1:1 ratio, 3 H total, methyl ester), 3.22 and 3.18 (singlets, ca. 1.1:1 ratio, 3 H total, OCH_{3}), $2.45(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{COOMe}$), $2.33-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-6^{\prime}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}$, acetate $)$ $2.0-1.10\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 1.40,1.39,1.36,1.33$, and 1.32 (singlets, 12 H total, acetonides), 0.88 and 0.87 (singlets, ca. 1.1:1 ratio, 9 H total, $\mathrm{Si}-t-\mathrm{Bu}$), $0.095,0.079$ and 0.045 (singlets, 6 H total, $\mathrm{SiMe} \mathrm{e}_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{43} \mathrm{H}_{70} \mathrm{O}_{13} \mathrm{Si}-\mathrm{H} 821.4508$, found 821.4505. Anal Calcd for $\mathrm{C}_{43} \mathrm{H}_{70} \mathrm{O}_{13} \mathrm{Si}: \mathrm{C}, 62.74 ; \mathrm{H}, 8.57$. Found: $\mathrm{C}, 62.84 ; \mathrm{H}, 8.73$.

Methyl [Methyl 12-O-(tert-butyldimethylsilyl)-2,4,6,8,10,13,14,16,18-nonadeoxy-4-(hydroxymethyl)-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranosidjonate 19-Acetate (34ab). A solution of acetate 33ab ($2.68 \mathrm{~g}, 3.25 \mathrm{mmol}$) in absolute $\mathrm{MeOH}\left(60 \mathrm{~mL}\right.$; distilled from $\mathrm{Mg}(\mathrm{OMe})_{2}$ and $10 \% \mathrm{Pd}-\mathrm{C}(480$ mg) was vigorously stirred under a H_{2} atmosphere for 48 h . The H_{2} was purged with argon, and the solution was filtered through a pad of Celite. Evaporation and flash column chromatography (silica, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided pure diol $34 \mathrm{ab}(1.82 \mathrm{~g}, 76 \%)$ as a mixture of isomers. 34ab: white amorphous solid; $R_{f} 0.14$ and 0.16 (silica, $5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-22.9^{\circ}\left(\mathrm{c} 0.84, \mathrm{CHCl}_{3}\right.$, ca. 2.4:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max }$ $3450(\mathrm{~m}, \mathrm{OH}), 3000,2960,2860,1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1385,1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 4.16\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}\right)$, $4.10-3.45\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.70$ and 3.69 (singlets, ca. 1.2:4 ratio, 3 H total, methyl ester), 3.15 and 3.12 (singlets, ca. 1:2.4 ratio, 3 H total, OCH_{3}), 2.85-2.15 (m, $\left.6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}), \mathrm{CH}_{2}, \mathrm{OH}\right), 2.02$ (s, 3 H , acetate), 1.90-1.10 (m, $13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), 1.41 and 1.36 (singlets, 12 H total, acetonides), 0.89 and 0.87 (singlets, ca. 1:2.4 ratio, 9 H total, $\mathrm{Si}-t-\mathrm{Bu}$), $0.10,0.084$ and 0.049 (singlets, 6 H total, $\mathrm{Si}_{\mathrm{Me}}^{2}$); HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{66} \mathrm{O}_{13} \mathrm{Si}$ - Me 7I9.4038, found $719.4006(\mathrm{M}-\mathrm{Me})$.
[Methyl 12-O-(tert-butyldimethylsilyl)-2,4,6,8,10,13,14,16,18-nona-deoxy-4-(hydroxymethyl)-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranosidjonic Acid 1,4 ${ }^{1}$-Lactone 19 Acetate and Isomer (35ab). To a magnetically stirred solution of diol 34ab ($1.82 \mathrm{~g}, 2.47 \mathrm{mmol}$) and ground 3 A molecular sieves in dry acetonitrile (25 mL) under argon was added imidazole ($844 \mathrm{mg}, 12.4 \mathrm{mmol}$). The reaction mixture was stirred for 10 h at $25^{\circ} \mathrm{C}$ and then diluted with ether (200 mL) and filtered through a pad of Celite. The solution was then washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and brine (20 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and flash column chromatography (silica, 5% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) produced pure lactone 35 ab ($1.32 \mathrm{~g}, 76 \%$) as a
mixture of isomers. 35ab; white amorphous solid; $R_{f} 0.28$ and 0.33 (silica, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\left.\alpha\right]^{20}{ }_{\mathrm{D}}+6.9^{\circ}$ (c $0.85, \mathrm{CHCl}_{3}$, ca. 1.9:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3450(\mathrm{~m}, \mathrm{OH}), 3000,2960,2940,2860,1740$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$) , $1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 4.73$ (dd, $J=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{O}$ (lactone) $), 4.16(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OAc}$), $4.10-3.50(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CHO}, \mathrm{CHO}$ (lactone), 3.15 and 3.09 (singlets, ca. 1.9:1 ratio, 3 H total, OCH_{3}), 2.95 (dd, $J=17.6,6.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHC}(\mathrm{O})), 2.60-2.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H \mathrm{C}(\mathrm{O}), \mathrm{CH}_{2}\right), 2.13(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 2.05\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetate), $1.82-1.10\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 1.41$, 1.36, and 1.34 (singlets, 12 H total, acetonides), 0.90 and 0.88 (singlets, ca. 1.9:1 ratio, 9 H total, $\mathrm{Si}-t-\mathrm{Bu}$), 0.10, 0.099 and 0.053 (singlets, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{35} \mathrm{H}_{62} \mathrm{O}_{12} \mathrm{Si}+\mathrm{H} 703.4089$, found 703.4063 (M + H).
[Methyl 5,12-bis- O-(tert-butyldimethylisilyl)-2,4,6,8,10,13,14,16,18-nonadeoxy-4-(hydroxymethyl)-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranosidjonic Acid 1,4 ${ }^{1}$-Lactone 19-Acetate and Isomer (36ab), To a magnetically stirred solution of alcohol and isomer $35 \mathrm{ab}(1.32 \mathrm{~g}, 1.88 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added 2,6 -lutidine ($0.261 \mathrm{~g} \equiv 0.28 \mathrm{~mL}, 2.44 \mathrm{mmol}$) under argon; the solution was then cooled to $0{ }^{\circ} \mathrm{C}$. To this was slowly added t $\mathrm{BuMe}_{2} \mathrm{SiOTf}(0.547 \mathrm{~g} \equiv 0.48 \mathrm{~mL}, 2.07 \mathrm{mmol})$, and stirring was continued for 10 min at $0^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and the mixture was diluted with ether (100 mL). The organic layer was washed with saturated aqueous $\mathrm{CuSO}_{4}(2$ $\times 15 \mathrm{~mL}$), saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, and brine (15 mL), and dried (MgSO_{4}). Evaporation and purification by flash column chromatography (silica, 70% ether in petroleum ether) afforded pure disilyl ether 36ab ($1.23 \mathrm{~g}, 80 \%$) as a mixture of isomers. 36ab: white amorphous solid; $R_{f} 0.16$ and 0.22 (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}$ $+8.8^{\circ}\left(\right.$ c 1.03, CHCl_{3}, ca. 1:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3000,2960,2940$, 2860,1740 , ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $1385 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 4.55(\mathrm{dd}, J=11.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$ (lactone)), $4.14(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}$), $4.10-3.50(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CHO}, \mathrm{CHO}$ (lactone)), 3.12 and 3.07 (singlets, ca. 1:1 ratio, 3 H total, OCH_{3}), 2.90 (dd, $J=17.6,6.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHC}(\mathrm{O})$), 2.48 (dd, $J=17.6,11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{C}(\mathrm{O})$), 2.20 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.02 (s, 3 H , acetate), $1.95-1.00\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right.$), 1.38, 1.33, and 1.32 (singlets, 12 H total, acetonides), 0.87 and 0.85 (singlets, 18 H total, $\mathrm{Si}-t-\mathrm{Bu}$), $0.067,0.042,0.028$, and 0.016 (singlets, 12 H total, $\mathrm{Si} \mathrm{Me}_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{O}_{12} \mathrm{Si}_{2} 817.4954$ found $817.4938(\mathrm{M}+\mathrm{H})$; Anal. Caled for $\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{O}_{12} \mathrm{Si}_{2}: \mathrm{C}, 60.26 ; \mathrm{H}$, 9.37. Found: C, $60.33 ; \mathrm{H}, 9.18$.
[Methyl 5,12-bis-O-(tert-butyldimethylsilyl)-4-carboxy-$2,4,6,8,10,13,14,16,18$-nonadeoxy-9,11:15,17-di-O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranosid]onic Acid Dimethyl Ester 19-Acetate and Isomer (37ab). To a magnetically stirred solution of lactone $36 \mathrm{ab}(1.23 \mathrm{~g}, 1.51 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added aqueous LiOH ($2.66 \mathrm{~mL}, 1 \mathrm{M}$ solution, 1.66 mmol), and the mixture was stirred for 20 min . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and diluted with ether (75 mL). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine (5 mL) and concentrated. The residue was diluted with ether (10 mL), cooled to $0^{\circ} \mathrm{C}$, and treated with diazomethane as previously described for methyl ester 32ab. Evaporation and flash column chromatography (silica, 60% ether in petroleum ether) afforded pure hydroxy ester ($1.26 \mathrm{~g}, 98 \%$) as a mixture of isomers. Hydroxy ester: white amorphous solid; $R_{f} 0.28$ (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-0.83^{\circ}$ (c $0.72, \mathrm{CHCl}_{3}$, ca. 1.9:1 ratio); 1 R $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3500(\mathrm{w}, \mathrm{OH}), 3000,2960,2940,2870,1740(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.14(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OAc}$), $4.10-3.50\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}$, methyl ester), 3.12 and 3.07 (singlets, ca. 1:1.9 ratio, 3 H total, OCH_{3}), $2.80(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O})\right), 2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{C}(\mathrm{O})), 2.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.05-1.00(\mathrm{~m}$, $15 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), 2.02 ($\mathrm{s}, 3 \mathrm{H}$, acetate), $1.38,1.33$, and 1.31 (singlets, 12 H total, acetonides), 0.86 and 0.85 (singlets, 18 H total, $\mathrm{Si}-t-B u$), $0.086-0.023$ (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{42} \mathrm{H}_{80} \mathrm{O}_{13} \mathrm{Si}_{2}+\mathrm{H} 849.5216$, found $849.5200(\mathrm{M}+\mathrm{H})$.

The above prepared hydroxy ester ($1.26 \mathrm{~g}, 1.48 \mathrm{mmol}$) was dissolved in dry DMF (10 mL) and treated with PDC ($2.78 \mathrm{~g}, 7.40 \mathrm{mmol}$) followed by diazomethane treatment as previously described for methyl ester 32ab and flash column chromatography (silica, 50% ether in petroleum ether) produced pure dimethyl ester $\mathbf{3 7 a b}$ ($987 \mathrm{mg}, 76 \%$) as a mixture of isomers. 37ab: colorless oil; $R_{f} 0.32$ and 0.34 (silica, 50% ether in petroleum ether); $[\alpha]^{20}{ }_{D}{ }^{-2.88^{\circ}}\left(c 0.71, \mathrm{CHCl}_{3}\right.$, ca. 1.4:1 ratio); IR (CHCl_{3}) $\nu_{\max } 3000,2960,2840,1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1440,1385,1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.31-3.50\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 4.13(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C} \mathrm{H}_{2} \mathrm{OAc}$), 3.65-3.63 (singlets, 6 H total, methyl esters), 3.17 and 3.12 (singlets, ca. 1:1.4 ratio, 3 H total, OCH_{3}), 2.50-1.00 (m, 17 $\left.\mathrm{H}, \mathrm{CHC}(\mathrm{O}), \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}), \mathrm{CH}_{2}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}$, acetate), $1.38,1.32$, and 1.30 (singlets, 12 H total, acetonides), 0.84 and 0.80 (singlets, 18 H total, $\mathrm{Si}-t-\mathrm{Bu}$), 0.047 to -0.042) (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{43} \mathrm{H}_{80} \mathrm{O}_{14} \mathrm{Si}_{2}+\mathrm{H} 877.5165$, found $877.5148(\mathrm{M}+\mathrm{H})$.

Methyl 5,12-bis-O-(tert-butyldimethyIsilyl)-4-carboxy-$2,4,6,8,10,13,14,16,18$-nonadeoxy- $9,11: 15,17$-di- O-isopropylidene-L-glycero-L-gulo-L-lyxo-7-nonadeculo-7,3-pyranosidaric Acid 1,4-Dimethyl Ester and Isomer (38ab). To a magnetically stirred solution of acetate 37ab ($2.19 \mathrm{~g}, 2.50 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added finely ground $\mathrm{K}_{2} \mathrm{CO}_{3}(1.73 \mathrm{~g}, 12.5 \mathrm{mmol})$. After 30 \min, the reaction was diluted with ether (200 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, and dried (MgSO_{4}). Evaporation and purification by flash column chromatography (silica, 80% ether in petroleum ether) afforded pure primary alcohol ($1.99 \mathrm{~g}, 95 \%$) as a mixture of isomers. Primary alcohol: white amorphous solid; $R_{f} 0.30$ and 0.34 (silica, 80% ether in petroleum ether); $[\alpha]^{20} \mathrm{D}$ $-1.2^{\circ}\left(c 0.81, \mathrm{CHCl}_{3}\right.$, ca. 1.4:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3510(\mathrm{~m}, \mathrm{OH})$, 3000, 2940, 2840, $1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1440,1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35-3.51\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.76,3.74,3.65$, and 3.64 (singlets, 6 H total, methyl esters), 3.17 and 3.12 (singlets, ca. 1:1.4 ratio, 3 H total, OCH_{3}), $2.54-0.95\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CHC}(\mathrm{O}), \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}), \mathrm{CH}_{2}\right.$, OH), 1.42, 1.38 , and 1.35 (singlets, 12 H total, acetonides), 0.81 and 0.80 (singlets, 18 H total, $\mathrm{Si}-t-B u$), 0.049 to -0.038) (singlets, 12 H total, SiMe ${ }_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{78} \mathrm{O}_{13} \mathrm{Si}_{2}+\mathrm{H} 835.5059$, found 835.5055 ($\mathrm{M}+\mathrm{H}$).

The above prepared alcohol ($1.99 \mathrm{~g}, 2.38 \mathrm{mmol}$) was dissolved in dry DMF (12 mL) and treated with PDC ($4.48 \mathrm{~g}, 11.9 \mathrm{mmol}$) under argon and stirred for 10 h at $25^{\circ} \mathrm{C}$. The reaction mixture was diluted with DMF (12 mL) and poured into ether (200 mL). The ethereal solution was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$ and brine (20 mL) and dried (Mg . SO_{4}). Evaporation and flash column chromatography (silica, 2.5% MeOH in ether) provided pure carboxylic acid $38 \mathrm{ab}(1.59 \mathrm{~g}, 79 \%$) as a mixture of isomers. 38ab: white amorphous solid; $R_{f} 0.34$ (silica, 2.5% MeOH in ether); $[\alpha]^{20}{ }_{\mathrm{D}}-8.6^{\circ}$ (c 0.7 , MeOH , ca. 1.5:1 ratio); IR (CH$\left.\mathrm{Cl}_{3}\right) \nu_{\max } 3000,2960,1735(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1385,1260,1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.40-3.10(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CHO}), 3.66,3.65$, and 3.64 (singlets, 6 H total, methyl esters), 3.17 and 3.12 (singlets, ca. 1.5:1 ratio, 3 H total, OCH_{3}), 2.50-1.80 (m, $\left.5 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.77-1.10$ (m, $12 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}$), 1.42, 1.39, 1.46, 1.32, 1.31, 1.27, 1.26, 1.23 (singlets, 12 H total, acetonides), 0.86 and 0.80 (singlets, 18 H total, $\mathrm{Si}-t$ $B u$) $, 0.054,0.026,-0.015$, and -0.034 (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{76} \mathrm{O}_{14} \mathrm{Si}_{2}+\mathrm{K} 887.4410$, found 887.4460 ($M+K$).
[Methyl 8,15-bis-O-(tert-butyldimethylsilyl)-16-carboxy-2,4,6,7,10,12,14,16,18,20-decadeoxy-3,5:9,11-di- O-isopropylidene-20-phosphono-L-arabino-D-glycero-D-gulo-13,19-eicosadiulo-13,17pyranosidjonic Acid 16,20,20-Trimethyl Ester and Isomer (16ab). To a solution of dimethyl methylphosphonate ($0.744 \mathrm{~g} \equiv 0.65 \mathrm{~mL}, 6.0 \mathrm{mmol}$) in dry THF (5 mL) at $-78^{\circ} \mathrm{C}$ under argon was added droowise $n-\mathrm{BuLi}$ ($2.4 \mathrm{~mL}, 2.5 \mathrm{M}$ solution in hexane, 6.0 mmol). After stirring for 10 min , the diester $38 \mathrm{ab}(1.70 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dry THF (14 mL) was added dropwise to the solution of phosphonate anion. After being stirred for 15 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for an additional 15 min before it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$. It was extracted with EtOAc (100 mL), and the organic layer was washed with brine (60 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and flash column chromatography (silica, $10 \% \mathrm{MeOH}$ in ether) gave pure keto phosphonate $16 \mathrm{ab}(1.17 \mathrm{~g}, 62 \%)$ as a mixture of isomers. 16ab: white amorphous solid; $R_{f} 0.20$ (silica, $10 \% \mathrm{MeOH}$ in ether); $[\alpha]^{20}{ }_{\mathrm{D}}+3.1^{\circ}\left(c 0.16, \mathrm{MeOH}\right.$, ca. $3: 1$ ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }}$ 3000, 2960, 2930, 2860, $1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1580,1435,1380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35-3.05\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHO}, \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right), 3.77$ and 3.75 (doublets, $J=11.3 \mathrm{~Hz}, 6 \mathrm{H}$ total, $\left.\mathrm{P}(\mathrm{OMe})_{2}\right)$, 3.66 and 3.65 (singlets, ca. $3: 1$ ratio, 3 H total, methyl ester), 3.16 and 3.10 (singlets, ca. 3:1 ratio, 3 H total, OCH_{3}), $2.81-1.10\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}), \mathrm{CHC}-\right.$ (O), $\mathrm{CH}, \mathrm{CH}_{2}$) $, 1.43,1.36,1.31$, and 1.30 (singlets, 12 H total, acetonides), 0.85 and 0.80 (singlets, 18 H total, $\mathrm{Si}-t-\mathrm{Bu}$), 0.051 to -0.046 (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{43} \mathrm{H}_{81} \mathrm{O}_{16} \mathrm{Si}_{2} \mathrm{P}+$ H 941.4678 , found $941.4907(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{81} \mathrm{O}_{16} \mathrm{Si}_{2} \mathrm{P}$: C, 54.87 ; H, 8.67. Found: C, $54.85 ; \mathrm{H}, 8.71$
(4R,6R)-6-[(3R)-3-(tert -Butyldimethylsiloxy)-3-[(4R,6S)-6-[[(4S,5S,6S)-4-(tert -butyldimethylsiloxy)-5-carboxy-2-methoxy-6-(3-phosphonoacetonyl)-tetrahydro-2H-pyran-2-yl]methyl]-2,2-dimethyl-m-dioxan-4-yllpropyl]-2,2-dimethyl-m-dioxane-4-acetic Acid, 6-Trimethyl Ester, 4-Ester with (all-E)-(14S,15R,16S,17S)-15-(tert-Butyldime-thylsiloxy)-17-hydroxy-14,16-dimethyl-2,4,6,8,10,12-octadecahexaenal and Isomer (39ab). To a solution of acid $16 \mathrm{ab}(471 \mathrm{mg}, 0.500 \mathrm{mmol})$ and alcohol 15 ($646 \mathrm{mg}, 1.50 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added DCC ($124 \mathrm{mg}, 0.60 \mathrm{mmol}$) and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$), and the mixture was stirred for 4 h under argon. The reaction mixture was then directly subjected to flash column chromatography (silica, ether $\rightarrow 2.5 \%$ MeOH in ether) to give pure keto phosphonate $\mathbf{3 9 a b}(474 \mathrm{mg}, 70 \%$) as a mixture of isomers and unreacted aldehyde $\mathbf{1 5}(\mathbf{4 0 9} \mathrm{mg})$. 39ab: orange amorphous solid; $R_{f} 0.41$ (silica, $2.5 \% \mathrm{MeOH}$ in ether); $[\alpha]^{20} \mathrm{D}+16.5^{\circ}$
(c 0.20, CHCl_{3}, ca. 2.5:1 ratio); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3000,2960,2930,2860$, 1720 (s, $\mathrm{C}=\mathrm{O}$, ester), 1670 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$, aldehyde), $1600(\mathrm{~s}, \mathrm{C}=\mathrm{C}), 1560$, $1380 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 410 \mathrm{~nm}\left(\mathrm{E}_{\mid \mathrm{cm}} 1 \% 1210\right) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, amphotericin numbering) $\delta 9.53$ (d, $J=8.0 \mathrm{~Hz}, 1$ H, aldehyde), 7.12 (dd, $J=14.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23$), 6.70 (dd, $J=$ $14.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $6.55-6.02$ (m, 9 H , olefinic), 5.72 (dd, J $=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-33$), $5.06(\mathrm{dq}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-37), 4.35-3.00$ $\left(\mathrm{m}, 10 \mathrm{H}, \mathrm{CHO}, \mathrm{PCH}_{2} \mathrm{C}(\mathrm{O})\right), 3.75\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{P}(\mathrm{OMe})_{2}\right), 3.65$ ($\mathrm{s}, 3 \mathrm{H}$, methyl ester), 3.16 and 3.10 (singlets, ca. 2.5:1 ratio, 3 H total, OCH_{3}), 2.90-1.0 (m, 19 H , allylic $\mathrm{CHC}(\mathrm{O}), \mathrm{CH}, \mathrm{CH}_{2}$), 1.41, 1.32, and 1.30 (singlets, 12 H total, acetonides) $1.10\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.0\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\right.$), $0.88-0.80$ (singlets, 30 H total, CH_{3}, $\mathrm{Si}-t-\mathrm{Bu}$), 0.05 to -0.05) (singlets, 18 H total, $\mathrm{Si} M e_{2}$); HRMS (FAB) calcd for $\mathrm{C}_{69} \mathrm{H}_{121} \mathrm{O}_{18} \mathrm{Si}_{3} \mathrm{P}-\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}\right) 1139.6319$, found 1139.6281 [M $-\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}\right)$, cleavage of polyene unit at $\mathrm{C}-34 / \mathrm{C}-35$ bond $]$

8,15,35-Tris-O-(tert-butyldimethylsilyI)-19-de[(3-amino-3,6-dideoxy-β-d-mannopyranosyl)oxy]-3,5:9,11-di- O-isopropylidene-13- O-methyl-19oxoamphotericin B Methyl Ester and Isomer (3ab). To a solution of keto phosphonate-aldehyde $\mathbf{3 9} \mathbf{a b}$ ($406 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry MeCN (3.0 mL) was added anhydrous $\mathrm{LiCl}(63.6 \mathrm{mg}, 1.5 \mathrm{mmol})$ followed by the addition of DBU $(0.228 \mathrm{~g} \equiv 224 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$. The reaction was stirred at $25^{\circ} \mathrm{C}$ under argon for 4 h . The reaction mixture was directly subjected to flash column chromatography (silica, 40% ether in petroleum ether) to give pure macrocyclic enone 3ab as a mixture of separable isomers ($258 \mathrm{mg}, 70 \%$) identical with samples obtained from a mphotericin B (1) by protection and degradation (for spectral and other data see ref 9).

19-De[(3-amino-3,6-dideoxy- β-D-mannopyranosyl)oxy]-3,5:9,11-di- O -isopropylidene-13-O-methyl-19-oxoamphotericin B Methyl Ester (40). The heptaenone 3 a ($246 \mathrm{mg}, 0.20 \mathrm{mmol}$, faster isomer) was dissolved in dry MeOH (2 mL) in a plastic reaction vessel under argon. Dilute HF.py (0.60 mL) solution (prepared as follows: 1 mL of commercial HF-py, Aldrich, ca. 70%, in a plastic bottle under argon at $-20^{\circ} \mathrm{C}$ was slowly diluted with 4 mL of dry pyridine) was added dropwise and the reaction mixture was heated with stirring at $45^{\circ} \mathrm{C}$ for 48 h . After cooling, it was poured onto saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with EtOAc (40 mL). The organic extract was washed with saturated aqueous $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$ and brine (20 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and flash column chromatography (silica, $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded pentahydroxy enone $40(97.3 \mathrm{mg}, 55 \%)$ as a single isomer. 40: deep orange amorphous solid; $R_{f} 0.34$ (silica, $8 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+349.7^{\circ}\left(c 0.37, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3510(\mathrm{~m}$, OH), $3000,2940,2880,1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1640,1620,1600,1550,1380$ cm^{-1}; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 422 \mathrm{~nm}\left(\mathrm{E}_{1 \mathrm{~cm}} 1 \% 735\right) ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.39(J=15.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21), 6.76(\mathrm{dd}, J=14.4$, $10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23), 6.5-6.05(\mathrm{~m}, 10 \mathrm{H}$, olefinic), $6.11(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-20$), 5.38 (dd, $J=14.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-33$), $5.27(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-37$), $4.4-3.0\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2}(\mathrm{O}) \mathrm{OH}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, methyl ester), $2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.55-0.90(\mathrm{~m}, 8 \mathrm{H}$, allylic $\mathrm{CH}, \mathrm{CHC}(\mathrm{O})$, $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}), \mathrm{CH}, \mathrm{CH}_{2}\right), 1.40,1.36,1.33$, and 1.29 (singlets, 12 H total, acetonides), $1.17\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.00\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$); HRMS (FAB) calcd for $\mathrm{C}_{49}-$ $\mathrm{H}_{72} \mathrm{O}_{14}+\mathrm{Na} 907.4820$, found $907.4766(\mathrm{M}+\mathrm{Na})$. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{14}: \mathrm{C}, 66.48 ; \mathrm{H}, 8.20$. Found: $\mathrm{C}, 66.37 ; \mathrm{H}, 8.12$.

19-Def(3-amino-3,6-dideoxy- β-D-mannopyranosyl) oxy)-13-O-methyl-19-oxoamphotericin B Methyl Ester (41). To a solution of the diacetonide $40(88.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry $\mathrm{MeOH}(1 \mathrm{~mL})$ was added camphorsulfonic acid (CSA, $4.6 \mathrm{mg}, 0.02 \mathrm{mmol}$). The reaction mixture was stirred at room temperature under argon for 1 h before it was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ followed by extraction with EtOAc (20 mL). The organic extract was washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica, $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave heptaenone ester 41 ($28.2 \mathrm{mg}, 50 \%$ based on 50% conversion) as a single methoxy a nomer. 41: deep orange amorphous solid; $R_{f} 0.18$ (silica, $10 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+172.9^{\circ}\left(\mathrm{c} 0.70, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}$-vis $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }} 424 \mathrm{~nm}$ $\left(\mathrm{E}_{1 \mathrm{~cm}} 1 \% 767\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3450,3000,2930,2860,1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}$, ester, lactone), $1640,1590,1550 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.20(\mathrm{dd}, J=16.1,11.7 \mathrm{~Hz}$, I H, H-21), $6.71(\mathrm{dd}, J=13.5$, $11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23), 6.5-6.1(\mathrm{~m}, 10 \mathrm{H}$, olefinic), $6.21(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-20), 5.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-33, \mathrm{H}-37), 4.4-3.0(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CHO}$, $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O})$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$, methyl ester), 3.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.5-0.8 (m, 18 H , allylic $\left.\mathrm{CH}, \mathrm{C} \mathrm{H}_{2} \mathrm{C}(\mathrm{O}), \mathrm{C} H \mathrm{C}(\mathrm{O}), \mathrm{CH}_{2}, \mathrm{CH}\right), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.11\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), hydroxyl protons are not included; HRMS (FAB) calcd for $\mathrm{C}_{43^{\circ}}$ $\mathrm{H}_{64} \mathrm{O}_{14}+\mathrm{Na} 827.4194$, found $827.4107(\mathrm{M}+\mathrm{Na})$.

13-O-Methylamphoteronolide B Methyl Ester (42). To a solution of the heptaenone $41(16.1 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(7.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). The reaction was over immediately as indicated by the change of color from deep orange to light
yellow. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mL) and extracted with EtOAc (10 mL). The EtOAc extract was washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica, $15 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave pure heptaene alcohol 42 ($15.3 \mathrm{mg}, 95 \%$) as a single methoxy anomer. 42: yellow amorphous solid; $R_{f} 0.37$ (silica, $15 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $[\alpha]^{20} \mathrm{D}$ $+73.3^{\circ}\left(c 0.60, \mathrm{CH}_{3} \mathrm{OH}\right) ; \mathrm{UV}-\mathrm{vis}(\mathrm{MeOH}) \lambda_{\max } 405\left(\mathrm{E}_{1 \mathrm{~cm}} 1 \% 909\right), 380$ (864), 362 (530), $344 \mathrm{~nm}(264)$; IR (Nujol) $\nu_{\text {max }} 3400,1430$ (s, $\mathrm{C}=\mathrm{O}$, ester, lactone), $1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{TMS}$) δ 6.48-6.10 (m, 12 H , olefinic), 5.80 (dd, $J=15.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20$), 5.47 (dd, $J=14.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-33), 5.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-37), 4.49-3.12$ (m, $9 \mathrm{H}, \mathrm{CHO}$), 3.74 (s, 3 H , methyl ester), $3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.4-1.2 (m, 19 H , allylic $\left.\mathrm{CH}, \mathrm{C} \mathrm{H}_{2} \mathrm{C}(\mathrm{O}), \mathrm{CHC}(\mathrm{O}), \mathrm{CH}_{2}, \mathrm{CH}\right), 1.22$ (d, $J=6.7$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), hydroxyl protons are not included; HRMS (FAB) calcd for $\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{O}_{14}+\mathrm{Na} 829.4350$, found $829.4340(\mathrm{M}+\mathrm{Na})$.

Amphoteronolide B Methyl Ester (43), To a solution of polyenic alcohol 42 ($12.1 \mathrm{mg}, 0.015 \mathrm{mmol}$) in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (1 mL , $5: 1$ ratio) was added camphorsulfonic acid (CSA, $0.7 \mathrm{mg}, 0.003 \mathrm{mmol}$). After being
stirred for 1 h at room temperature, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) and solid NaHCO_{3} (20 mg) was added. The mixture was stirred for 10 min and then added directly to a column (silica). Flash chromatography ($15 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave pure methyl ester of amphoteronolide 43 ($11.5 \mathrm{mg}, 97 \%$) identical with samples obtained from amphotericin \mathbf{B} (1) by protection and degradation (for spectral and other data see ref 9)

Amphoteronolide B (2). Amphoteronolide B (2) was prepared from its methyl ester $\mathbf{4 3}$ as previously described. ${ }^{9}$ For spectral and other data see ref 9 .

Acknowledgment. We express our many thanks to Dr. C. Cimarusti, The Squibb Institute for Medical Research, for generous samples of amphotericin B and to Drs. George Furst, Patrick Carroll, and John Dykins for their superb NMR, X-ray crystallographic, and mass spectroscopic assistance. This work was financially supported by the National Institutes of Health, Merck Sharp \& Dohme, and Hoffmann-La Roche.

Total Synthesis of Amphotericin B. 3. The Final Stages ${ }^{\dagger}$

K. C. Nicolaou,* R. A. Daines, Y. Ogawa, and T. K. Chakraborty
Contribution from the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104. Received October 26, 1987

Abstract

The final stages of the total synthesis of amphotericin B (1) are described. Mycosamine derivatives 11 and 12 were synthesized and attempts were made to couple them with amphoteronolide B derivative 13. These glycosidation studies, however, led exclusively to the undesired glycosides 14 and 15 , respectively. The successful strategy for the completion of the synthesis involved an indirect route involving the mycosamine equivalent 30 containing (i) a trichloroacetimidate group at C - 1 as a leaving group, (ii) an acetoxy group at $C-2$ with a β-glycoside bond directing capability, and (iii) an azido group at $C-3$ as a pregenitor to the desired amino group. After the stereospecific attachment of the carbohydrate fragment (30) onto the aglycon (13), the configuration at $C-2$ was corrected by stereocontrolled reduction of the corresponding ketone. Further chemical manipulations and functional group deprotections led to a mphotericin $\mathbf{B (1)}$, thus completing the first total synthesis of this complex polyene macrolide antibiotic.

Previous papers in this series described chemistry and degradation of amphotericin $\mathrm{B}(\mathbf{1}){ }^{1}$ construction of key building blocks for the total synthesis of amphoteronolide $B(2),{ }^{2}$ and the total synthesis of amphoteronolide $B(2){ }^{3}$ We describe herein the full account of the final stages of the amphotericin $B(1)^{4}$ project culminating in the total synthesis ${ }^{5}$ of this clinically useful antibiotic. Our strategy for the total synthesis of this target required attachment of a suitable mycosamine unit to an appropriately protected derivative of the aglycon 2. This glycosidation procedure was recognized from the outset as a thorny problem, principally in view of the following concerns: (a) the rather labile nature of amphoteronolide $B(2)$ and amphotericin $B(1)$ and their derivatives, (b) the presence of a basic nitrogen in the carbohydrate moiety, and (c) the requirement for a β-glycoside bond in a 1,2 -cis relationship with the $\mathrm{C}-2$ hydroxyl group of the carbohydrate unit. The latter requirement is one of the most difficult to fulfill in the area of oligosaccharide synthesis. These circumstances and requirements amounted to a rather formidable challenge. Having synthesized the requisite aglycon derivatives both by partial ${ }^{1}$ and total synthesis, ${ }^{3}$ we then focused our efforts on the final drive toward amphotericin B (1). To this end, systematic studies were undertaken to construct appropriate mycosamine donors and to develop a viable glycosidation process for the required coupling.

Results and Discussion

Initial Glycosidation Studies. Our initial attempts focused on the construction of appropriate mycosamine donors and their attachment to the aglycon derivative 13. Scheme I summarizes a short route to a number of mycosamine derivatives used in these

[^6]
studies, starting with the readily available precursor $3 .{ }^{6}$ Thus, the carbohydrate derivative 3 was converted to iodide 4 via the

[^7]
[^0]: ${ }^{\dagger}$ This paper is dedicated with respect and affection to Professor E. J. Corey on the occasion of his 60 th birthday.

[^1]: (1) Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty, T. K. J. Am. Chem. Soc., preceding paper in this issue.
 (2) Preliminary communication: Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K. J. Am. Chem. Soc. 1987, 109, 2208. Apparently migration of the acetonide group occurred under the reaction conditions ($\mathbf{2 7} \boldsymbol{\mathbf { 2 8 }} \boldsymbol{\mathbf { 2 9 }}$). We thank Professor S . Masamune for bringing this possibility to our attention in the form of a manuscript: Kennedy, R. M.; Abiko, A.; Masamune, S. Tetrahedron Lelt. 1988, 29, 447. See also: Kennedy, R. M.; Abili, A; Takemasa, T.; Okumoto, H.; Masamune, S. Tetrahedron Lett. 1988, 29, 45I.
 (3) Preliminary communication: Nicolaou, K. C.; Chakraborty, T. K.; Daines, R. A.; Simpkins, N. S. J. Chem. Soc., Chem. Commun. 1986, 413.

[^2]: (4) DeKoning, H.; Mallo, G. N.; Springer-Fidder, A.; Subramanian-Er-

[^3]: (5) We thank Dr. Patrick Carroll of this department for his assistance in solving this X -ray structure.

[^4]: (6) Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975.

[^5]: (8) Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 399.
 (9) Nicolaou, K. C.; Chakraborty, T. K.; Ogawa, Y.; Daines, R. A.; Simpkins, N. S.; Furst, G. T. J. Am. Chem. Soc., preceding paper in this issue. (I0) Synthetic and degradative samples of this compound were spectroscopically and chromatographically identical although the ratio of the two isomers varied. Compounds 28-38 and 16 were carried through the sequence as mixtures of isomers.
 (1I) Nicolaou, K. C.; Seitz, S. P.; Pavia, M. P. J. Am. Chem. Soc. 1982, 104, 2030.

[^6]: ${ }^{\dagger}$ This paper is dedicated with respect and affection to Professor E. J. Corey on the occasion of his 60 th birthday.

[^7]: (I) Nicolaou, K. C.; Chakraborty, T. K.; Daines, R. A.; Ogawa, Y.; Simpkins, N. S.; Furst, G. T. J. Am. Chem. Soc., previous paper in this issue. (2) Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty, T. K. J. Am. Chem. Soc., previous paper in this issue
 (3) Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K.; Ogawa, Y. J. Am. Chem. Soc., previous paper in this issue
 (4) Isolation: Vandeputte, J.; Watchtel, J. L.; Stiller, E. T. Antibiot. Annu. 1956, 587. X-ray structure: Mechinski, W.; Shaffner, C. P.; Ganis, P.; Avitabile, G. Tetrahedron Lett. 1970, 3873. Ganis, P.; Avitabile, G.; Mechinski, W.; Shaffner, C. P. J. Am. Chem. Soc. 1971, $93,4560$.
 (5) Preliminary communication: Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K.; Ogawa, Y. J. Am. Chem. Soc. 1987, 109, 282I. Note that in this communication the structure of 31 was incorrectly assumed to be the regioisomer with groups R_{1} and R_{3} interchanged. This misassignment, however, was of no consequence in the overall total synthesis.
 (6) The precursor 3 was prepared according 10 the reported procedure (Richardson, A. C. J. Chem. Soc., Chem. Commun. 1962, 373) with some modifications. Namely, the corresponding nitro sugar was reduced by Pd$(\mathrm{OH})_{2} \mathrm{CH}_{2},\left(\mathrm{H}_{2}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 2: \mathrm{I}, 25^{\circ} \mathrm{C}, 2\right.$ days), and the product was purified by flash column chromatography (silica, $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and recrystallization (EtOH).

